Αστέρες Νετρονίων

Το πτώμα ενός άστρου που προέρχεται από μια Υπερκαινοφανή Ανάλαμψη (Supertnova).

Είναι αυτό που απομένει όταν ένα άστρο αρκετά μεγάλης μάζας (μεγαλύτερης από το όριο Chandrasekhar) καταρρέει με μια μεγάλη έκρηξη, αφήνοντας πίσω του ένα απίθανα πυκνό υπόλειμμα – τόσο πυκνό όσο ο πυρήνας ενός ατόμου.

Η ύπαρξη των αστέρων νετρονίων προβλέφθηκε θεωρητικά την δεκαετία του ’30, από δύο Αμερικανούς αστρονόμους, τον γερμανικής καταγωγής Walter Baade (1893 – 1960) και τον Ελβετικής καταγωγής Fritz Zwicky (1898 – 1974), μόλις δύο έτη μετά την πειραματική ανακάλυψη του νετρονίου από τον Sir James Chadwick . Η επιστημονική κοινότητα της εποχής αντέδρασε έντονα στις προτάσεις των δύο ερευνητών, καθώς ήταν αντίθετες με τις κρατούσες επιστημονικές απόψεις. To 1937, o George Gamov (1904 – 1968) απέδειξε ότι η διάμετρος ενός αστέρα νετρονίων με μάζα ίση με την ηλιακή θα ήταν μόνο 10 km. Αργότερα, η ύπαρξη αστέρων νετρονίων απεδείχθη θεωρητικά και από άλλους ερευνητές. Η θεωρία φαίνεται ότι επαληθεύθηκε το 1967, με την ανακάλυψη των Pulsars (pulsating radio sourses) στο Campridge, από μία ομάδα Άγγλων αστρονόμων με επικεφαλής τον Antony Hewish (βραβείο Νόμπελ το 1974 για την ανακάλυψη αυτή) και κύρια ερευνήτρια την Jocelyn S. Bell, που εκπονούσε τότε την διδακτορική της διατριβή. Η ανακάλυψη έγκειται στον εντοπισμό μιας παλλόμενης ραδιοπηγής στον αστερισμό της Αλώπεκος, με περίοδο παλμών 1.337 sec. Δυστυχώς, η συνεισφορά της Bell στην ανακάλυψη αυτή αποσιωπήθηκε, γεγονός που προκάλεσε την αντίδραση πολλών αστρονόμων.

Jocelyn Bell

Η πρώτη ερμηνεία που δόθηκε για τους pulsars ήταν ότι η εκπομπή των περιοδικών ραδιοπαλμών οφείλεται στην επαναλαμβανόμενη συστολή και διαστολή ενός άστρου. Αλλά το 1968, ο αστρονόμος Thomas Gold απέδειξε ότι οι pulsars είναι αστέρες νετρονίων με πολύ μεγάλη ταχύτητα περιστροφής. Η άποψη αυτή επιβεβαιώθηκε από τις παρατηρήσεις.

Οι ερευνητές πιστεύουν ότι κάθε αστέρας νετρονίων περιστρέφεται σε μικρή απόσταση περί έναν άλλο, συνηθισμένο αστέρα. Το ισχυρό Βαρυτικό Πεδίο του Νετρονικού Αστέρα έλκει τα αέρια που σχηματίζουν την εξωτερική επιφάνεια του γείτονά του. Καθώς περιστρέφονται, επιταχύνονται και θερμαίνονται, τα αέρια εκπέμπουν ακτίνες Χ με ένα χαρακτηριστικό ρυθμό, ο οποίος «προδίδει» την παραμόρφωση του περιβάλλοντος Χώρου.

Δομή


Ένας τυπικός αστέρας νετρονίων έχει διάμετρο μόλις 20 χιλιομέτρων, αλλά ζυγίζει περισσότερο από τον Ήλιο. Η πυκνότητα τους είναι τεράστια, 108 – 1013 Kgr/cm3, ενώ η θερμοκρασία στην επιφάνεια τους φτάνει τους 106 Kelvin.

O υπολογισμός της κρίσιμης μάζας για τους αστέρες νετρονίων είναι δύσκολη υπόθεση καθόσον η συμπεριφορά της ύλης στις συνθήκες αυτές χρήζει περαιτέρω μελέτης. Για έναν αστέρα αποτελούμενο εξ ολοκλήρου από νετρόνια η κρίσιμη μάζα υπολογίζεται σε 0.72 ηλιακές (Θεώρηση Fermi) ενώ οι Cameron-Tsuruta την υπολογίζουν σε 1.6 – 2.0 ηλιακές μάζες.

Δομή αστέρα νετρονίων

Οι αστέρες νετρονίων παρουσιάζουν πολύ μεγάλη ταχύτητα περιστροφής η οποία εύκολα εκτιμάται με χρήση της Αρχής Διατήρησης της Στροφορμής, αν ο αστέρας θεωρηθεί ως μία ομογενής σφαίρα.

Το μαγνητικό πεδίο τους είναι ιδιαίτερα ισχυρό και εκτιμάται στα 1010 Gauss, τρισεκατομμύρια φορές ισχυρότερο από το μαγνητικό πεδίο του Ήλιου, και παράγει περιοδικούς παλμούς ισχυρών ραδιοκυμάτων.

Η Εξέλιξη ενός Αστέρα σε Νετρονιακό


Κατά τη διάρκεια της εξέλιξής του, ένας αστέρας με μάζα μεγαλύτερη από το όριο Chandrasekhar, που έχει εξαντλήσει τα πυρηνικά του καύσιμα, κάτω από ορισμένες προϋποθέσεις μπορεί να βρεθεί σε μία κατάσταση όπου ο πυρήνας του να αποτελείται μόνο από νετρόνια και ταυτόχρονα η κατάρρευσή του να συνεχίζεται.

Συγκεκριμένα, σε ένα μεγάλο Αστέρα, η θερμοκρασία στον πυρήνα λόγω της βαρυτικής κατάρρευσης, μπορεί να ανέλθει στους 106, οπότε αρχίζουν οι θερμοπυρηνικές αντιδράσεις του Άνθρακα (C), συντίθενται διαδοχικά βαρύτεροι πυρήνες στοιχείων, καταλήγοντας στον αδρανή Σίδηρο (26Fe56).

Σε αυτό το σημείο και καθώς έχουν εξαντληθεί οι διαθέσιμες πηγές ενέργειας, η υδροστατική ισορροπία διαταράσσεται, και αρχίζει μια νέα διαδικασία βαρυτικής κατάρρευσης που παρασύρει τις επιφανειακές στοιβάδες. Ελαφρά στοιχεία φθάνουν στο ιδιαίτερα θερμό κέντρο του Αστέρα, με αποτέλεσμα να συμβαίνουν πάρα πολλές αντιδράσεις που παράγουν πολύ περισσότερα βαρέα μέταλλα.

Ένα τεράστιο κρουστικό κύμα γεννιέται σε αυτό το στάδιο το οποίο, διαδιδόμενο προς τα έξω, προκαλεί μία ιδιαίτερα βίαιη έκρηξη με απότομη εκτίναξη μεγάλης ποσότητας ύλης στον μεσοαστρικό χώρο. Πρόκειται για μια έκρηξη υπερκαινοφανούς (supernova), το πλέον κατακλυσμικό φαινόμενο που συμβαίνει στην Σύγχρονη Εποχή στο Σύμπαν.

Υπερκαινοφανής Ανάλαμψη

Αν η μάζα του αστέρα μετά την έκρηξη κυμαίνεται μεταξύ 1.4 και 3.2 ηλιακών μαζών τότε το κεντρικό τμήμα του συνεχίζει να συστέλλεται και η εναπομείνασα ύλη συμπιέζεται τόσο πολύ, ώστε καταλήγει σε πυκνότητα πολύ μεγαλύτερη από αυτήν των λευκών νάνων.

Στην περίπτωση αυτή η νευτώνεια θεώρηση περί βαρύτητας παύει πλέον να επαρκεί, οπότε η εξίσωση υδροστατικής ισορροπίας του αστέρα αντικαθίσταται από ακριβέστερη σχετικιστική, με τη βοήθεια της Γενικής Θεωρίας της Σχετικότητας.

Τα ηλεκτρόνια επιταχύνονται σε σχετικιστικές ταχύτητες και ενώνονται με τα πρωτόνια σχηματίζοντας νετρόνια (p + e → n + ν). Τα νετρίνα που παράγονται διαφεύγουν από τον αστέρα οπότε το εσωτερικό του πλέον αποτελείται μόνο από ένα εκφυλισμένο αέριο νετρονίων (αέριο το οποίο δεν υπακούει στους νόμους των τέλειων αερίων) ενώ φυσικά στην επιφάνειά του κυριαρχούν τα πρωτόνια και τα ηλεκτρόνια.

Όμως τα νετρόνια είναι φερμιόνια, δηλαδή υπόκεινται στην απαγορευτική αρχή του Pauli. Συνεπώς οι αστέρες νετρονίων ισορροπούν εξ αιτίας της «Πίεσης των Εκφυλισμένων Νετρονίων».

Ας σημειωθεί εδώ ότι αν ο αρχικός αστέρας είναι ακόμη μεγαλύτερος, μπορεί να εξελιχθεί, μετά τον «θάνατό του», όχι σε αστέρα νετρονίων αλλά σε μαύρη τρύπα, ένα ακόμη περισσότερο εξωτικό ουράνιο σώμα, όπου η Βαρυτική Κατάρρευση συνεχίζεται ακόμη περισσότερο, με αποτέλεσμα η τρομακτικά υψηλή πυκνότητα της Μελανής Οπής να δημιουργήσει ένα ισχυρότατο Βαρυτικό Πεδίο που αιχμαλωτίζει τα πάντα γύρω του, ακόμη και το ίδιο το φως.

Αστρική Εξέλιξη


Δεν παρουσιάζουν περαιτέρω εξέλιξη. Εφόσον έχουν εξαντλήσει τα ενεργειακά τους αποθέματα, απλά συνεχίζουν να ψύχονται και στο τέλος σβήνουν εντελώς. . Στη πορεία της αστρικής εξέλιξης οι αστέρες νετρονίων τοποθετούνται ένα βήμα πριν τις μελανές οπές.

Πηγή

Ο κύκλος ζωής ενός αστέρα νετρονίων

Ολική έκλειψη σελήνης, Ιανουάριος 2019

Η ολική έκλειψη της σελήνης τα ξημερώματα της Δευτέρας 21 Ιανουαρίου 2019.

Τα ξημερώματα της Δευτέρας 21 Ιανουαρίου, ένα όμορφο ουράνιο φαινόμενο έλαβε χώρα: Η πρώτη πανσέληνος του έτους εισχώρησε στη σκιά της Γης. Η ολική σεληνιακή έκλειψη διέσχισε τον ουρανό, αιχμαλωτίζοντας το βλέμμα εκατομμυρίων ανθρώπων στον πλανήτη.

Ταυτόχρονα η Σελήνη βρέθηκε κοντά στο περίγειο της τροχιάς της (στο κοντινότερο σημείο από τη Γη), που σημαίνει ότι η φαινόμενη διάμετρος και η λαμπρότητά της ήταν αυξημένη (Υπερπανσέληνος).

Η έκλειψη στην ολότητά της ήταν ορατή στις περισσότερες περιοχές της Ελλάδας.

Το φεγγάρι έγινε κόκκινο όπως φαίνεται σε αυτή την άποψη από ένα τηλεσκόπιο στο Παρατηρητήριο Griffith στο Λος Άντζελες, Καλιφόρνια.
Σύνθεση της συνολικής σεληνιακής έκλειψης στις 21 Ιανουαρίου 2019 από το Αμμάν της Ιορδανίας και τον αστροφωτογράφο Zaid Abbadi.

Οι ακριβείς χρόνοι του φαινομένου (σε ώρα Ελλάδας) ήταν οι εξής:

  • Έναρξη έκλειψης παρασκιάς: 04:36 π.μ.
  • Έναρξη μερικής έκλειψης: 05:34 π.μ.
  • Έναρξη ολικότητας: 06:41 π.μ.
  • Μέγιστο έκλειψης: 07:12 π.μ.
  • Τέλος ολικότητας: 07:43 π.μ.
  • Δύση Σελήνης: διαφέρει ανάλογα με την περιοχή. 
  • Τέλος μερικής έκλειψης 08:50 (Σελήνη κάτω από τον ορίζοντα) 
  • Τέλος έκλειψης παρασκιάς 09:48 (Σελήνη κάτω από τον ορίζοντα) 

Η επόμενη ολική έκλειψη που θα είναι ορατή από την Ελλάδα θα συμβεί τον Σεπτέμβριο του 2025.

Ερυθροί Γίγαντες: Οι άτακτοι αστρικοί υπερήλικες

Τι συμβαίνει σε έναν αστέρα όταν τελειώνουν τα καύσιμα του πυρήνα του;

Εισαγωγή

Ο Ερυθρός Γίγας είναι ένας Αστέρας μικρής ή μεσαίας μάζας (0,5-10 ηλιακές μάζες), στα τελευταία στάδια αστρικής εξέλιξης.

Πρόκειται ουσιαστικά για έναν Αστέρα που έχει εξαντλήσει τα αποθέματα του Υδρογόνου στην κεντρική του περιοχή, οπότε αρχίζει την καύση του σε έναν φλοιό που περιβάλλει τον πυρήνα. Η εξωτερική του ατμόσφαιρα είναι διογκωμένη και αραιή και η επιφανειακή του θερμοκρασία σχετικά χαμηλή.

Χαρακτηριστικά


Οι ερυθροί γίγαντες έχουν λαμπρότητες από 100 έως 10.000 φορές την λαμπρότητα του ήλιου. Η ακτίνα τους μπορεί να είναι μερικές δεκάδες ή και εκατοντάδες φορές μεγαλύτερη από την ακτίνα του ήλιου. Η επιφανειακή τους θερμοκρασία εκτιμάται από 3.000 – 5.000 Κ, ενώ το χρώμα τους ποικίλει από πορτοκαλοκίτρινο έως κόκκινο.

Σχηματισμός Ερυθρού Γίγαντα


Όταν το Υδρογόνο (H) στο εσωτερικό ενός άστρου εξαντληθεί (δηλαδή το 10% περίπου της συνολικής ποσότητάς του), έχει σχηματιστεί ένας σημαντικά μεγάλος πυρήνας, με διαστάσεις περίπου μισής αστρικής ακτίνας, που αποτελείται από το προϊόν της καύσης του υδρογόνου, δηλαδή αδρανές Ήλιο (He). Κι ενώ το Υδρογόνο αρχίζει να καίγεται στα υπερκείμενα στρώματα, στον πυρήνα δεν πραγματοποιούνται θερμοπυρηνικές αντιδράσεις. Η χρονική στιγμή κατά την οποία αρχίζουν οι θερμοπυρηνικές αντιδράσεις καύσης του Υδρογόνου στον υπερκείμενο του πυρήνα φλοιό, εξαρτάται από τη μάζα του άστρου. Για αστέρια με μάζα μικρότερη από 1,5 ηλιακές μάζες, η έναρξη της είναι σχεδόν ταυτόχρονη με την εξάντληση των αποθεμάτων του υδρογόνου στον πυρήνα.

Από αυτό το σημείο και καθώς η πίεση στο κέντρο του αστεριού ελαττώνεται τόσο, ώστε να μην μπορεί να υπερνικήσει την βαρύτητα των εξωτερικών στρωμάτων του αστεριού, η βαρυτική κατάρρευση αρχίζει έναν νέο κύκλο. Ο πυρήνας του αστεριού συστέλλεται, η θερμοκρασία του ανεβαίνει και ταυτόχρονα ακτινοβολεί, θερμαίνοντας τα υπερκείμενα στρώματα του Υδρογόνου. Καθώς η θερμοκρασία αυτών υπερβαίνει το όριο των 2·107 Κ, η καύση του Υδρογόνου δεν γίνεται πλέον με τον κύκλο πρωτονίου – πρωτονίου, αλλά με τον κύκλο άνθρακα – αζώτου , ο οποίος παράγει πολύ περισσότερη ενέργεια .

Τα εξωτερικά στρώματα του αστέρα διαστέλλονται πράγμα που σημαίνει ότι ενώ ο πυρήνας του συστέλλεται, ο ίδιος στο σύνολό του διαστέλλεται. Στον πυρήνα συμβαίνει μία διαρκής επισυσσώρευση υλικού καθώς τα προϊόντα της καύσης του υδρογόνου σε Ήλιο στους υπερκείμενους φλοιους, επιρρίπτονται διαρκώς σε αυτόν. H φωτεινότητα του αστέρα παραμένει περίπου σταθερή, αλλά εφ’ όσον διαστέλλεται (δηλαδή η ακτίνα του (R) αυξάνεται), η ενεργός του θερμοκρασία ελαττώνεται. Ο αστέρας μετακινείται από την Κύρια Ακολουθία και γίνεται ερυθρός υπογίγαντας.

Η συρρίκνωση του κεντρικού πυρήνα συνεχίζεται και τοιουτοτρόπως η θερμοκρασία σύντομα φτάνει στους 2·108 Κ, ικανή ώστε να αρχίσουν οι θερμοπυρηνικές αντιδράσεις του Ηλίου που καίγεται προς Βηρύλλιο (Βe) και κατόπιν Άνθρακα (C).

Ο αστέρας αρχίζει να παράγει ενέργεια με ταχύτερο ρυθμό έτσι ώστε η εσωτερική του θερμοκρασία να αυξάνεται, η αργή βαρυτική συστολή να σταματά και ο αστέρας αν διαστέλλεται και να γίνεται γίγαντας.

Καθώς ακτινοβολεί από μεγαλύτερη επιφάνεια εξακολουθώντας να διατέλλεται, η δυναμική του ενέργεια αυξάνεται, οπότε για να αποκατασταθεί Θερμική Ισορροπία, ελαττώνεται η επιφανειακή του θερμοκρασία.

Σύμφωνα λοιπόν με τον νόμο του Wien (λmax·T=σταθ) το μήκος κύματος της εκπεμπόμενης ακτινοβολίας μετατοπίζεται προς μεγαλύτερες τιμές, δηλαδή προς το ερυθρό χρώμα. Έτσι λοιπόν το μεγαλύτερο ποσοστό της ακτινοβολούμενης ισχύος εκπέμπεται σε μεγαλύτερα μήκη κύματος και ο αστέρας φαίνεται ερυθρότερος, γίνεται δηλαδή ερυθρός γίγαντας.

Η συνεχής αύξηση της θερμοκρασίας στον πυρήνα, εξαιτίας των θερμοπυρηνικών αντιδράσεων του Ηλίου, οδηγεί στην πραγματοποίηση όλο και πιο πολύπλοκων πυρηνικών αντιδράσεων. Στοιχεία όπως το Οξυγόνο (Ο), το Νέο (Ne), το Μαγνήσιο (Μg), το Πυρίτιο (Si), κάνουν την εμφάνισή τους. Διαδοχικά, όλο και πολυπλοκότεροι πυρήνες παράγονται.

Ας σημειωθεί εδώ ότι η καύση του ηλίου είναι εκρηκτική, βίαιη και μη ελεγχόμενη. Είναι η εποχή που ο αστέρας «σπαταλάει» αλόγιστα τα ενεργειακά του αποθέματα κι ενώ έκανε εκατομμύρια χρόνια να κάψει το Υδρογόνο του πυρήνα του, καίει με το Ήλιο μέσα σε πολύ μικρότερο χρονικό διάστημα.

Εφόσον λοιπόν στο στάδιο του Ερυθρού Γίγαντα οι αστέρες δαπανούν ενέργεια με πολύ ταχύ ρυθμό, δεν διαρκεί επί πολύ και οι αστέρες δαπανούν ένα πολύ μικρό ποσοστό της ζωής τους σε αυτό. Έτσι σε κάθε γαλαξία, οι ερυθροί γίγαντες είναι λίγοι στον αριθμό. Παρόλα αυτά, εξαιτίας των διαστάσεων και της λαμπρότητάς τους, οι ονομαστότεροι παρατηρήσιμοι αστέρες του ουρανού είναι ερυθροί γίγαντες.

Σημειώνουμε εδώ πως αν η μάζα ενός αστέρα είναι μικρότερη από 0.5 ηλιακές μάζες, η θερμοκρασία στο εσωτερικό του δεν θα φτάσει ποτέ στο σημείο έναρξης των θερμοπυρηνικών αντιδράσεων καύσης του Ηλίου. Σε αυτήν την περίπτωση ο αστέρας δεν εισέρχεται στο στάδιο του ερυθρού γίγαντα, αλλά μετά την αρχική αύξηση της θερμοκρασίας του, ψύχεται καταλήγοντας σε Ερυθρό Νάνο. Ο Ερυθρός Νάνος συνεχίζει τη συστολή του και μετατρέπεται σε Λευκό και εν συνεχεία σε Μελανό Νάνο. Επειδή οι Ερυθροί Νάνοι έχουν πολύ μικρή μάζα, θεωρητικά μπορούν να παραμείνουν στην Κύρια Ακολουθία για χρονικό διάστημα πολύ μεγαλύτερο από την σημερινή ηλικία του Σύμπαντος. Συνεπώς είναι αδύνατον, κάποιοι από τους λευκούς νάνους που υπάρχουν σήμερα στο Σύμπαν, να προέρχονται από την εξέλιξη ερυθρών νάνων.

Η ιστορία επαναλαμβάνεται και μετά την εξάντληση των αποθεμάτων του Ηλίου του Πυρήνα που αποτελείται κυρίως από Άνθρακα, επειδή η θερμοκρασία (108 Κ) δεν επαρκεί για την καύση του στοιχείου αυτού, αρχίζει εκ νέου η βαρυτική του συστολή, ενώ το κέλυφος διαστέλλεται. Η εξέλιξη στον κλάδο των ερυθρών γιγάντων συνεχίζεται.

Παράλληλα, το Ήλιο το οποίο υπάρχει στον φλοιό που περιβάλλει τον πυρήνα (η στάχτη της καύσης του Υδρογόνου που συνέβη εκεί κατά το προηγούμενο στάδιο) αναφλέγεται, ενώ στον δεύτερο φλοιό ερχίζει να καίγεται το Υδρογόνο. Ο αστέρας βρίσκεται τώρα στο στάδιο καύσης διπλού φλοιού και καθώς διαστέλλεται, διαπερνά στον κλάδο τον ερυθρών υπεργιγάντων στον οποίο, εξαιτίας του γοργού ρυθμού κατανάλωσης ενέργειας, δαπανά ένα πολύ σύντομο σχετικά χρονικό διάστημα.

Δεν είναι βέβαιo ότι θα καταφέρει ο αστέρας να φτάσει στην θερμοκρασία η οποία είναι απαραίτητη για την έναρξη των θερμοπυρηνικών αντιδράσεων καύσης του Άνθρακα και την δημιουργία βαρύτερων στοιχείων.

Στο σημείο αυτό λοιπόν, διακρίνουμε δύο περιπτώσεις:

  1. H θερμοκρασία του Πυρήνα αυξάνεται και φθάνει σε ικανό σημείο ώστε να αρχίσουν οι θερμοπυρηνικές αντιδράσεις του άνθρακα, οπότε και σταθεροποιείται. Η εξέλιξη του άστρου συνεχίζεται σε αστέρα νετρονίων ή σε μελανή οπή.
  2. Ο Πυρήνας δεν γίνεται ποτέ αρκετά θερμός ώστε να επέλθει ανάφλεξη του Άνθρακα, οπότε σταματάει η περαιτέρω εξέλιξη του άστρου.

Γνωστοί Ερυθροί Γίγαντες


Ο γνωστότερος ερυθρός γίγαντας του Τοπικού Γαλαξία είναι ο Αντάρης (Antares), ο οποίος βρίσκεται στον αστερισμό του Σκορπίου, σε απόσταση 500 ετών φωτός από την Γη. Είναι ο μεγαλύτερος (σε όγκο) γνωστός αστέρας, με ακτίνα 700 φορές μεγαλύτερη από την ακτίνα του Ήλιου.

Ο Αλδεβαράνης (Aldebaran), ο γνωστός στους αρχαίους Έλληνες «οφθαλμός του Ταύρου», είναι ορατός ως ένα ερυθρό σημείο στον αστερισμό του Ταύρου. Απέχει 68 έτη φωτός και η ακτίνα του είναι 38 – 45 φορές μεγαλύτερη από την ακτίνα του Ήλιου. Είναι ο πρώτος αστέρας που ανακαλύφθηκε ότι εμφανίζει Ιδία Κίνηση, κατακρημνίζοντας την αντίληψη ότι οι αστέρες παραμένουν ακίνητοι.

Ο Βετελγόζης (Betelgeuse), που βρίσκεται στον αστερισμό του Ωρίωνα, απέχει από τη Γη 600 έτη φωτός. Η ακτίνα του είναι 730 φορές μεγαλύτερη από αυτήν του Ήλιου και συνεχώς πάλλεται, με αποτέλεσμα να μην έχει σταθερές διαστάσεις. Λόγω της προχωρημένης ασταθούς κατάστασής του, πιστεύεται ότι θα εκραγεί ως υπερκαινοφανής αστέρας.

(Ας σημειωθεί εδώ, ότι οι διάφορες τιμές που δίδονται στην διεθνή βιβλιογραφία τόσο για το μέγεθος των αστέρων όσο και για την απόστασή τους από την Γη, διαφέρουν σε πολλές περιπτώσεις αρκετά μεταξύ τους).

Το άρθρο αυτό βρίσκεται και εδώ.

Υπερκαινοφανείς Αστέρες: Ένας επεισοδιακός θάνατος

Οι υπερκαινοφανείς αναλάμψεις και ο εμπλουτισμός της κοσμικής αστρόσκονης.

Εισαγωγη


Ως Υπερκαινοφανής χαρακτηρίζεται ένας εκρηκτικώς μεταβλητός αστέρας, που εμφανίζει απότομη μεταβολή της φωτεινότητας και της φαινόμενης λαμπρότητάς του. Κατά την περίοδο της εκρηκτικής του ανάλαμψης μπορεί να αυξήσει την φαινόμενη λαμπρότητά του μέχρι και 20 μεγέθη.

Οι υπερκαινοφανείς αστέρες (supernova) οφείλουν το όνομά τους στον αστρονόμο Τύχωνα Μπραχέ (Tycho Brahé), ο οποίος εντόπισε τον λαμπρό αστέρα που φέρει το όνομά του και που αποτελούσε ανάλαμψη υπερκαινοφανούς που συνέβη το 1572 μ.Χ., στην περιοχή του αστερισμού της Κασσιόπης. Ο Μπραχέ δημοσίευσε τις παρατηρήσεις του την ίδια χρονιά, στο περιοδικό Astronomiae Instauratae Progymnasmata. Αργότερα (1573) συνέγραψε για το θέμα αυτό ένα μικρό βιβλίο με τίτλο «De Nova Stella» (Για το Νέο Αστέρι) καθώς ο ίδιος, όπως και οι λοιποί αστρονόμοι της εποχής του, πίστευαν ότι το φαινόμενο αυτό συνδέεται με την δημιουργία ενός νέου αστέρα.

Η βίαιη και μεγαλειώδης έκρηξη ενός υπερκαινοφανούς είναι ένα τεράστιας ισχύος φαινόμενο, καθώς απελευθερώνει μεγάλα ποσά ηλεκτρομαγνητικής και κινητικής ενέργειας.

Υπερκαινοφανής Ανάλαμψη

Η εμφάνιση ενός υπερκαινοφανούς (supernova) είναι αιφνίδια, συνήθως σε κάποιο σημείο που υπήρχε ένα κοινό αστέρι. Η λαμπρότητά του αυξάνει σε μερικές ώρες ή ημέρες κι εν συνεχεία ελλαττώνεται βαθμιαία, με χρόνο ημιζωής της τάξης των 100 περίπου ημερών. Η ηλεκτρομαγνητική ενέργεια που ακτινοβολείται σε λίγες μόνο ημέρες, είναι συγκρίσιμη με την ενέργεια που ακτινοβολεί ο ήλιος μας σε όλη τη διάρκεια της ζωής του που βρίσκεται στην Κύρια Ακολουθία.

Την έκρηξη συνοδεύει μια τεράστιας κλίμακας εκτόξευση ύλης γύρω από τον αστέρα (που πιθανότατα μπορεί να φτάσει έως και τις 10 ηλιακές μάζες). Έτσι σχηματίζεται ένα σφαιρωτό κέλυφος το οποίο διαστέλλεται με μεγάλη ταχύτητα.

Η κινητική ενέργεια του κελύφους είναι δεκαπλάσια της ηλεκτρομαγνητικής ενέργειας που εκλύεται κατά την έκρηξη. Επιπροσθέτως, ένα μεγάλο ποσό ενέργειας (εκατονταπλάσιο της ηλεκτρομαγνητικής) μεταφέρεται από τα νετρίνα, τα οποία εγκαταλείπουν τον supernova στο αρχικό στάδιο της έκρηξης.

Η δομή του αστέρα καταστρέφεται ολοκληρωτικά. Έτσι, παρόλο που γίνεται ορατός με γυμνό οφθαλμό, δημιουργώντας αρχικά, όπως είδαμε, στους αστρονόμους την εντύπωση ότι κάποιος νέος αστέρας γεννάται, αντίθετα όμως, η κατακλυσμική έκρηξη που κοστίζει στο αστέρα το μεγαλύτερο μέρος της μάζας και της ενέργειάς του, ουσιαστικά σηματοδοτεί τον θάνατό του.

Τα υπολείμματα υπερκαινοφανών εκπέµπουν στο φάσμα των ακτίνων Χ, κάτι που οφείλεται σε θερµική ακτινοβολία πέδης, λόγω της θέρμανσης που έχει επιφέρει το κύµα κρούσης (shock wave) του υπερκαινοφανούς. Πρόσφατα ανιχνεύτηκε ακτινοβολία που οφείλεται σε μη θερμική εκπομπή σχετικιστικών ηλεκτρονίων (σύγχροτρον και αντίστροφη σκέδαση Compton).

Ταξινομηση Υπερκαινοφανων


Με βάση την καμπύλη φωτός και το φάσμα τους, οι υπερκαινοφανείς χωρίζονται γενικά σε δύο μεγάλες κατηγορίες.

  1. Υπερκαινοφανείς τύπου Ιa. Δημιουργούνται από προσαύξηση μάζας σε συστήματα διπλών αστέρων. Παρατηρείται έλλειψη φασματικών γραμμών Υδρογόνου (Η) στο φάσμα τους.
  2. Υπερκαινοφανείς τύπου ΙΙ, Ιb, Ιc. Δημιουργούνται έπειτα από εξάντληση πυρηνικών καυσίμων σε μοναχικούς αστέρες μεγάλης μάζας. Στο φάσμα των υπερκαινοφανών τύπου ΙΙ παρατηρούνται φασματικές γραμμές Υδρογόνου (H) ενώ αντίθετα στο φάσμα των Υπερκαινοφανών τύπου Ιb/c παρατηρείται έλλειψη φασματικών γραμμών Υδρογόνου (Η) και Ηλίου (He).

Οι ερευνητές πιστεύουν ότι οι υπερκαινοφανείς που ανήκουν στον τύπο Ιa, παρουσιάζουν την ίδια λαμπρότητα, κάτι που χρησιμοποιείται για την ακριβή καταμέτρηση μεγάλων αποστάσεων στο σύμπαν. Το γεγονός αυτό (και μαζί του οι κοσμικές αποστάσεις και όσα γνωρίζουμε για τους υπερκαινοφανείς) τέθηκε υπό αμφισβήτηση από την ανακάλυψη του SN 2003fg (Champagne Supernova), τον Απρίλιο του 2003, ο οποίος είχε διπλάσια λαμπρότητα της αναμενόμενης και μάζα μεγαλύτερη του Ορίου Chandrasekhar (~2 ηλιακές μάζες). Ευτυχώς, καθώς φαίνεται, ο υπερκαινοφανής αυτός αποτελεί μαλλον εξαίρεση για τους υπερκαινοφανείς τύπου Ia, παρά κανόνα.

Ας σημειωθεί ότι σε κάποια σημεία του ουράνιου στερεώματος έχουν εντοπιστεί υπερκαινοφανείς που δεν ταξινομούνται σε καμία από τις παραπάνω κατηγορίες, όπως ο SN 2005E, ο οποίος εντοπίστηκε το 2005. Η έκρηξή του απελευθέρωσε τεράστιες ποσόσητες Τιτανίου και Ασβεστίου στον μεσοαστρικό χώρο. Ο τύπος αυτός υπερκαινοφανών θα μπορούσε να εξηγήσει την μεγάλη συγκέντρωση ασβεστίου στο Σύμπαν, που αποτελεί μυστήριο για τους αστρονόμους, αφού δεν μπορεί να ερμηνευτεί από τις εκρήξεις που ανήκουν στους τύπους που προαναφέρθηκαν.

Μηχανισμος Εκρηξης Υπερκαινοφανους


Η εξήγηση της έκρηξης των υπερκαινοφανών, της ύστατης ουσιαστικά προσπάθειας των μεγάλων αστέρων να αποφύγουν την ολοκληρωτική Βαρυτική Κατάρρευση εκτοξεύοντας μεγάλες ποσότητες ύλης στον Μεσοαστρικό Χώρο, αποδείχθηκε μια επίπονη διαδικασία για τους επιστήμονες, αποτελώντας μυστήριο για την Αστροφυσική. Η χρήση των υπερυπολογιστών συντέλεσε αποφασιστικά στην θεωρητική παρακολούθηση της συμπεριφοράς των εσωτερικών φλοιών των Αστέρων, στα τελευταία στάδια της ζωής τους.

Έχουν προταθεί διάφορες θεωρίες οι οποίες αναφέρονται τόσο στην εξέλιξη μοναχικών αστέρων μεγάλης μάζας (Υπερκαινοφανείς τύπου Ib, Ic, ΙΙ), όσο και στην εξέλιξη διπλών αστρικών συστημάτων (Υπερκαινοφανείς τύπου Ιa). Η πρώτη από αυτές προτάθηκε το 1934 από τους αστροφυσικούς Walter Baade και Fritz Zwicky. Παρ’ όλα αυτά πρέπει να τονιστεί ότι ο φυσικός μηχανισμός έκρηξης των υπερκαινοφανών δεν είναι ακόμη απολύτως διαφανής.

Εξέλιξη μοναχικού αστέρα μεγάλης μάζας (Υπερκαινοφανής τύπου II, Ib/c)

Για μοναχικούς Αστέρες με μάζα από 5 έως και 10 φορές αυτήν του Ήλιου, φαίνεται πως η έκρηξη είναι αποτέλεσμα της σύντηξης του άνθρακα στον κεντρικό πυρήνα σύμφωνα με τις εξισώσεις:

Οι αντιδράσεις αυτές απελευθερώνουν μεγάλα ποσά ενέργειας. Επειδή γίνονται με ολοένα επιταχυνόμενο ρυθμό, οδηγούν στην έκρηξη του άστρου και συγκεκριμένα σε υπερκαινοφανή τύπου ΙΙ. Αν ο πυρήνας του άστρου δεν διαλυθεί με την βίαιη αυτή έκρηξη, το κομμάτι του που απομένει, εξελίσσεται συνήθως σε έναν αστέρα νετρονίων.

Καλλιτεχνική αναπαράσταση αστέρα Νετρονίων

Για τους μεγαλύτερους Αστέρες, με μάζα που υπερβαίνει τις 10 ηλιακές μάζες, τα πράγματα βαίνουν διαφορετικά. Όταν ένα τέτοιο Άστρο εξαντλήσει όλα τα ενεργειακά του αποθέματα, έχει δημιουργήσει έναν πυρήνα αδρανούς σιδήρου, με μάζα μεγαλύτερη από το όριο Chandrasekhar.

Εφόσον η βαρυτική πίεση δεν αντισταθμίζεται πλέον από την πίεση της ακτινοβολίας, η Υδροστατική Ισορροπία του πυρήνα διαταράσσεται (στα εξωτερικά στρώματα του αστέρα διατηρείται καθώς καίγονται εκεί ελαφρύτερα στοιχεία) και αρχίζει μια ταχεία Βαρυτική Κατάρρευση, που έχει ως αποτέλεσμα την υπερσυμπύκνωση της ύλης σε αυτόν και την υπερθέρμανση του άστρου σε θερμοκρασίες που ξεπερνούν τους 8·109 Κ. Ο σίδηρος φωτοδιασπάται σε σωματίδια α και νετρόνια σύμφωνα με την εξίσωση

Στη συνέχεια φωτοδιασπάται και το ήλιο:

Οι παραπάνω αντιδράσεις αυτές είναι έντονα ενδόθερμες, δηλαδή απορροφούν ενέργεια, γεγονός που επιφέρει παύση της αύξησης της θερμοκρασίας και της πίεσης στον πυρήνα και επιτάχυνση της βαρυτικής κατάρρευσης, που διαρκεί μόλις λίγα δευτερόλεπτα. Αν η μάζα του Αστέρα είναι μικρότερη των 25 ηλιακών μαζών (όριο σχηματισμού μελανής οπής) τότε η πορεία που ακολουθεί το Άστρο μέχρι την μεγαλειώδη του ανάλαμψη εξελίσσεται ραγδαία.

Τα ηλεκτρόνια που συμπεριφέρονται πλέον σχετικιστικά «συμπιέζονται» στον πυρήνα κι ενώνονται με τα πρωτόνια σχηματίζοντας νετρόνια και νετρίνα:

Τα νετρίνα που διαφεύγουν μεταφέρουν ενέργεια προς τα εξω επιταχύνοντας ακόμη περισσότερο την βαρυτική κατάρρευση του αστρικού πυρήνα.

H πυκνότητα των κεντρικών περιοχών φτάνει τα 4•1014 Kg•m-3, όριο στο οποίο η ύλη γίνεται αρκετά αδιαφανής ακόμη και για τα νετρίνα, τα οποία εγκλωβίζονται προσωρινά μέσα στον πυρήνα. Εφόσον όμως τα νετρίνα ήταν αυτά που μετέφεραν το μεγαλύτερο μέρος της ενέργειας του Αστέρα στο περιβάλλον του, με την παγίδευσή τους, ο μηχανισμός διάχυσης της ενέργειας επιβραδύνεται σημαντικά. Η πίεση του εκφυλισμένου αερίου νετρονίων που έχει πλέον δημιουργηθεί στον πυρήνα σταματά την βαρυτική του κατάρρευση.

Τα εξωτερικά στρώματα του αστέρα αρχίζουν τώρα να καταρρέουν προς τον «σκληρό», εκφυλισμένο πυρήνα (με ταχύτητες που φτάνουν τα 70.000 km/sec). Η ανάκρουση των καταρρέοντων εξωτερικών αέριων στρωμάτων του αστέρα από τον πυρήνα, η απότομη απελευθέρωση βαρυτικής ενέργειας (λόγω της κατακλυσμιαίας βαρυτικής κατάρρευσης) και τα νετρίνα (που τελικά καταφέρνουν να είναι οι πρώτοι «δραπέτες» από το σκηνικό της καταστροφής), δημιουργούν ένα τεράστιας ισχύος κρουστικό κύμα (shock wave), που μεταδίδεται ταχυτατα προς τα έξω, προκαλώντας έκρηξη της ύλης γύρω από τον πυρήνα. Η έκρηξη αυτή παρασύρει οριστικά προς το διάστημα ακόμη και τα τα εξωτερικά στρώματα του αστέρα.

Η αύξηση της θερμοκρασίας λόγω του κρουστικού κύματος είναι τεράστια. Σε αυτές τις συνθήκες είναι δυνατή η πραγματοποίηση των ενδόθερμων πυρηνικών αντιδράσεων σύνθεσης βαρύτερων του σιδήρου στοιχείων.

Το κεντρικό τμήμα του αρχικού πυρήνα που απομένει της έκρηξης, συνήθως εξελίσσεται σε Αστέρα Νετρονίων.

Εξέλιξη κλειστού δυαδικού συστήματος αστέρων (Υπερκαινοφανής τύπου Ia)

Για τους υπερκαινοφανείς τύπου Ιa, η θεωρία προτείνει ότι προέρχονται από διπλά συστήματα αστέρων από τα οποία ο πρωτεύων είναι ένας Λευκός Νάνος Άνθρακα – Οξυγόνου και ο δευτερεύων, ένας ενήλικας αστέρας της Κύριας Ακολουθίας ή ένας Ερυθρός Γίγας.

Μετά από μία μακρόχρονη ροή μάζας από τον συνοδό αστέρα προς τον λευκό νάνο (διάρκειας εκατομμυρίων ετών), και πιθανότατα αμέτρητες καινοφανείς αναλάμψεις, η μάζα του λευκού νάνου αυξάνεται αργά. Αυτό προκαλεί την συστολή του αστέρα και την άνοδο της θερμοκρασίας του. Η πίεση της βαρύτητας διαρκώς αυξάνεται μέχρι το σημείο εκείνο στο οποίο ακόμη και η πίεση των εκφυλισμένων ηλεκτρονίων δεν μπορεί να την εξισορροπήσει. Το σημείο οριοθετεί την μέγιστη προσαύξηση μάζας του λευκού νάνου και είναι το γνωστό όριο Chandrasekhar (1,4 ηλιακές μάζες).

Μόλις ο αστέρας περάσει το όριο αυτό, αρχίζει ταχεία βαρυτική κατάρρευση. Η μετατροπή βαρυτικής δυναμικής ενέργειας σε θερμική αυξάνει τη θερμοκρασία στους 6·108 K, οπότε αναφλέγεται ο Άνθρακας. Η ανάφλεξη είναι ουσιαστικά ανεξέλεγκτη, με την αύξηση της θερμοκρασίας του αστέρα και την αύξηση του ρυθμού των θερμοπυρηνικών αντιδράσεων να αλληλοτροφοδοτούνται.

Η ειδοποιός διαφορά σε σχέση με την καινοφανή θερμοπυρηνική ανάφλεξη είναι ότι ενώ αυτή συμβαίνει σε ένα λεπτό επιφανειακό στρώμα του λευκού νάνου, η ανάφλεξη του άνθρακα στον υποψήφιο υπερκαινοφανή εκτείνεται σε ολόκληρο τον λευκό νάνο, ο οποίος -έστω και προσωρινά- μοιάζει να αναγεννάται. Μέσα σε ένα δευτερόλεπτο ολόκληρος ο αστέρας αναφλέγεται.

Οι ταχείες αντιδράσεις σύντηξης μετατρέπουν ένα μεγάλο κλάσμα της μάζας του άστρου σε βαρύτερα στοιχεία όπως ο σίδηρος και το Νικέλιο. Η supernova Ia έκρηξη εκτοξεύει τα θραύσματα του λευκού νάνου στο διάστημα, με ταχύτητες που υπερβαίνουν τα 20.000 km/s. Ο κύριος αστέρας καταστρέφεται εντελώς, αφήνοντας τον συνοδό αστέρα να συνεχίσει, ως μοναχικός γίγαντας, την εξέλιξή του προς τον ήρεμο θάνατο ενός λευκού νάνου.

Η σημασια των supernovae


Αν θα ήθελε κάποιος να επισημάνει την σημασία των υπερκαινοφανών για την ζωή μας, δεν θα ήταν καθόλου υπερβολικό να πει πως σε αυτά ακριβώς τα ουράνια σώματα οφείλουμε την ύπαρξή μας.

Πράγματι η θεωρία επισημαίνει ότι τα μόνα στοιχεία που ήταν δυνατόν να συντεθούν στα πρώτα στάδια της δημιουργίας του Σύμπαντος, ήταν το Υδρογόνο (Η) και το Ήλιο (He). Οι μοναδικές περιοχές του γνωστού Σύμπαντος στις οποίες δημιουργούνται τα βαρύτερα στοιχεία, εντοπίζονται στο εσωτερικό των άστρων. Και ο καλύτερος τρόπος να διασκορπιστούν στον μεσοαστρικό χώρο, είναι οι εκρήξεις των υπερκαινοφανών αστέρων. Εξάλλου, η συμπίεση του μεσοαστρικού αερίου από τα ωστικά κύματα που παράγονται κατά τις εκρήξεις των υπερκαινοφανών, είναι δυνατόν να αποτελέσει την απαρχή για την δημιουργία νέων αστέρων.

Εφόσον λοιπόν γνωρίζουμε ότι από αυτό ακριβώς το μεσοαστρικό αέριο σχηματίζονται οι νέες γενιές αστέρων (όπως ο ήλιος μας) με συστήματα πλανητών (όπως η Γη), είναι προφανές ότι όλα τα βαριά μέταλλα τα οποία συναντάμε στο ηλιακό σύστημα, και συγκεκριμένα στη Γη, και τα οποία είναι άμεσα συνεδεμένα με τη μορφή του κόσμου μας και με αυτήν την εμφάνιση της ζωής, είναι προϊόντα κάποιου (ή κάποιων) υπερκαινοφανούς αστέρα που εξερράγη πάρα πολλά χρόνια πριν στην γειτονιά μας. Συνεπώς δεν αποτελεί καθόλου σχήμα λόγου η φράση «είμαστε φτιαγμένοι από αστερόσκονη».

Η «υπερκαινοφανης» απειλη


Δεν θα ήταν και τόσο παρακινδυνευμένο να αναφερθεί ότι ένας κοντινός στην Γη υπερκαινοφανής αστέρας θα μπορούσε με την ανάλαμψή του να την καταστρέψει. Μάλιστα ο κίνδυνος εξαφάνισης της ζωής στη Γη από ένα τέτοιο γεγονός, έχει καταταχθεί στα δέκα πλέον «επικίνδυνα» ενδεχόμενα. Όμως, όπως φαίνεται, έχει σχετικά μικρή πιθανότητα να συμβεί και χρονικά τοποθετείται στο απώτατο μέλλον.Όπως έχει προαναφερθεί, η έκρηξη ενός supernova απελευθερώνει στον μεσοαστρικό χώρο τεράστια ποσά ύλης και ενέργειας. Η Ηλεκτρομαγνητική Ενέργεια που ακτινοβολείται κείται τόσο στην ορατή περιοχή του φάσματος, όσο και στην περιοχή των υπεριωδών ακτίνων καθώς και των ακτίνων Χ και γ.Έτσι λοιπόν, μια τέτοιας ισχύος έκρηξη σε έναν μεταβλητό Αστέρα, που βρίσκεται σε απόσταση, από την Γη, μικρότερη των 25 ετών φωτός (όριο ασφαλείας σύμφωνα με τις εκτιμήσεις της ΝΑSA, το οποίο ενέχει μεγάλο περιθώριο σφάλματος και διαφέρει αρκετά σε διάφορες πηγές βιβλιογραφίας), είναι δυνατόν να καταστρέψει το στρώμα του όζοντος στην Στρατόσφαιρα, το οποίο αποτελεί το προστατευτικό φίλτρο της Γης στην Υπεριώδη Ακτινοβολία. Κάτι τέτοιο θα ήταν ιδιαίτερα επικίνδυνο για την Γήινη Βιόσφαιρα καθώς, χωρίς το φίλτρο αυτό, οι οργανισμοί που ζουν στην ξηρά και σε ρηχά ύδατα, είναι εκτεθειμένοι στις υπεριώδεις ακτίνες, οι οποίες είναι καταστροφικές για την δομή του DNA, προκαλώντας ανεπίστροφες γενετικές μεταλλάξεις.

Για τον λόγο αυτό, κάποιοι ερευνητές συνδέουν τη μαζική εξαφάνιση που συνέβη στο τέλος της Ορδοβίκιας Περιόδου (περίπου 440-450 εκατομμύρια έτη πριν) με την ανάλαμψη ενός supernova στη γειτονιά του Ήλιου, χωρίς ωστόσο να υπάρχουν πειστικές αποδείξεις προς τούτο.

Σύμφωνα με τον Narciso Benitez του Πανεπιστημίου Johns Hopkins στις ΗΠΑ, οι εκρήξεις υπερκαινοφανών, που συνέβησαν περί τα 2 εκατομμύρια έτη πριν, στο διαστρικό νέφος Sco-Cen (το οποίο υποχωρεί στην κατεύθυνση των αστερισμών Σκορπιού – Κενταύρου και την εποχή εκείνη απείχε 130 έτη φωτός από την Γη), ήταν εκείνες που προκάλεσαν κατακλυσμικές αλλαγές στο Γήινο οικοσύστημα. Η μεγάλης κλίμακας θαλάσσια εξάλειψη της περιόδου εκείνης (Πλειόκαινη – Πλειστόκαινη Περίοδος) αποδίδεται από τους παλαιοντολόγους στην καταστροφή της οζονόσφαιρας από κοσμικές ακτίνες και στην επακόλουθη είσοδο στην ατμόσφαιρα υπεριώδους ακτινοβολίας. Κάτι τέτοιο ταιριάζει με το σενάριο των εικαζόμενων επιπτώσεων στη γη μιας «κοντινής» έκρηξης υπερκαινοφανούς και ενισχύεται από τις αποθέσεις ραδιενεργού Σιδήρου-60 (Fe60) σε πολύ βαθειά ιζήματα, η ηλικία των οποίων υπολογίζεται στα 2 εκατομμύρια έτη. Το συγκεκριμένο ισότοπο του σιδήρου, σύμφωνα με τους επιστήμονες, δεν υπήρχε στη Γη αλλά οφείλεται στις εκρήξεις των Υπερκαινοφανών.

Ένας πολύ γνωστός σε μας υποψήφιος supernova, είναι ο ασταθής ερυθρός υπεργίγαντας Βετελγόζης (Betelgeuse), ο οποίος βρίσκεται σε απόσταση περίπου 640 ετών φωτός από την Γη.

Ένας άλλος σημαντικός αλλά ασυνήθιστος υποψήφιος, είναι ο αστέρας Ήτα, στον αστερισμό της Τρόπιδος, σε απόσταση 7.500 ετών φωτώς από την Γη. Ο τεράστιος αυτός αστέρας που έχει μάζα περίπου 120 φορές τη μάζα του Ηλίου, βρίσκεται σε κατάσταση ισχυρής αστάθειας και αναμένεται «σύντομα» να εκραγεί ως υπερκαινοφανής.

Ο υπερκαινοφανης του Ταυρου


Στις 4 Ιουλίου του 1.054 μ.Χ. παρατηρήθηκε από Κινέζους αστρονόμους, μία μεγαλειώδης έκρηξη υπερκαινοφανούς, κοντά στο άστρο ζ του Ταύρου. Στα Χρονικά της Σινικής ο υπερκαινοφανής του Ταύρου αναφέρεται ως ο «επισκέπτης αστέρας». Παρατηρήθηκε από Κινέζους και Ιάπωνες αστρονόμους και θεωρείται ότι θα πρέπει να τον είχαν καταγράψει και Ινδοί αστρονόμοι.Η συστηματικότερη καταγραφή του έγινε από τον Κινέζο αστρονόμο Γιανγκ Βέι Τεκ, σύμφωνα με την οποία η φαινόμενη λαμπρότητά του ήταν μεγαλύτερη από εκείνην της Αφροδίτης. Για 23 ημέρες μετά την ανάλαμψή του ο αστέρας ήταν ορατός ακόμη και κατά τη διάρκεια της ημέρας και ορατός τη νύκτα για δύο περίπου έτη, περνώντας εν συνεχεία στην «αφάνεια».Η έκρηξη αυτή πιστεύουμε ότι δημιούργησε το γνωστό νεφέλωμα του Καρκίνου (Crab nebula, NGC 1952 Ή Μ1) με νηματώδη υφή, ορατό ακόμη και με ερασιτεχνικό τηλεσκόπιο, το οποίο απέχει από τη Γη περί τα 6.300 έτη φωτός, έχει διάμετρο περίπου 10 έτη φωτός και εξακολουθεί να διαστέλλεται με ταχύτητα της τάξης των 103 km/sec.

Το νεφέλωμα του Καρκίνου

Υπάρχουν πράγματι ισχυρές ενδείξεις ότι το συγκεκριμένο Νεφέλωμα αποτελεί υπόλειμμα (supernova remnant) του υπερκαινοφανούς του Ταύρου, όπως τα αποτελέσματα συστηματικών παρατηρήσεων και καταγραφών του Νεφελώματος του Καρκίνου, που καταδεικνύουν ότι το φως της ανάλαμψής του έφθασε στην Γη 9 αιώνες πριν. Υπέρ της άποψης αυτής συνηγορούν και οι υπολογισμοί περί του μεγέθους και της ταχύτητας διαστολής του Νεφελώματος, του διάσημου αστρονόμου Edwin Powell Hubble.

Το 1968 εντοπίστηκε στο κέντρο του νεφελώματος, βόρεια του άστρου ζ του Ταύρου, αστέρας νετρονίων (pulsar), με ακτίνα 10 km και περίοδο περιστροφής 0,0331 sec. Το νεφέλωμα αποτελεί πηγή εκπομπής ακτίνων Χ.

Ο «ξεχωριστος» Υπερκαινοφανης SN 1987A


Εντοπίστηκε στις 24 Φεβρουαρίου 1987, από τον αστρονόμο Ian Shelton, στο Μεγάλο Νέφος του Μαγγελάνου (μικρός συνοδός γαλαξίας του Milky Way, ορατός από το Νότιο Ημισφαίριο) κοντά στο νεφέλωμα Ταραντούλα. Ο Υπερκαινοφανής αυτός αποτελεί μία από τις φωτεινότερες αναλάμψεις αστέρων τους τελευταίους 4 αιώνες, λάμποντας 108 φορές περισσότερο από τον Ήλιο.

Ο Υπερκαινοφανής SN1987A

Λόγω της μικρής του απόστασης από την Γη (163.000 έτη φωτός) και του τεχνολογικού μας εξοπλισμού, αποτελεί τον πρώτο κοντινό υπερκαινοφανή που παρατηρήθηκε αναλυτικά μετά από αυτόν του Kepler (ανέλαμψε το 1604 στον αστερισμό του Οφιούχου) και τον περισσότερο μελετημένο supernova όλων των εποχών.Οι παρατηρήσεις που πραγματοποιήθηκαν σε Παγκόσμιο Επίπεδο, εντόπισαν ακτίνες γ, Κοβάλτιο (Co), Νικέλιο (Ni), Πυρίτιο (Σι), οξυγόνο (O) και άλλους βαρύτερους πυρήνες και αρχικά επιβεβαίωσαν τις θεωρητικές προβλέψεις που υποδεικνύουν πως κατά τη διάρκεια μιας υπερκαινοφανούς έκρηξης παράγονται βαρύτερα μέταλλα. Για παράδειγμα, ο ραδιενεργός σίδηρος που εκτοξεύτηκε στον μεσοαστρικό χώρο από την έκρηξη αυτή, υπολογίζεται σε 20.000 Γήινες μάζες.Επίσης, τα νετρίνα που ανιχνεύτηκαν από αυτόν τον υπερκαινοφανή, επιβεβαίωσαν την σχετική θεωρία για τις συνθήκες θερμοκρασίας και πυκνότητας που επικρατούν στο εσωτερικό ενός υπερκαινοφανή και τον τρόπο δημιουργίας ενός νετρονιακού αστέρα.

Οι εικόνες από το Hubble Space Telescope αποκαλύπτουν ορισμένες ενδιαφέρουσες λεπτομέρειες:

  • Έναν λαμπερό αέριο δακτύλιο γύρω από το αστέρι, με διάμετρο περίπου 1 έτους φωτός. Εκτιμάται πως ο δακτύλιος δημιουργήθηκε τουλάχιστον 20.000 χρόνια πριν την ανάλαμψη του άστρου. Οι ακτίνες Χ που παρήγαγε η έκρηξη, ιόνισαν το αέριο του δακτυλίου, καθιστώντας το λαμπερό.
  • Δύο εξωτερικούς δακτυλίους αερίου που φωτοβολεί.
  • Μία κεντρική δομή σε σχήμα αλτήρα η οποία δημιουργήθηκε από δύο περιοχές θραυσμάτων στο κέντρο του αστέρα, απομακρυνόμενες η μία από την άλλη με ταχύτητα 30 εκατομμυρίων χιλιόμετρων την ώρα.
  • Την σύγκρουση του ωστικού κύματος της αστρικής έκρηξης με το αέριο του στενού δακτυλίου γύρω από το άστρο, η οποία προκαλεί την θέρμανση και την φωτοβολία του.

Οι μετρήσεις που προβλημάτισαν τους ερευνητές ήταν αυτές που αφορούσαν στο ορατό φως που ακτινοβολούσε ο υπερκαινοφανής και το οποίο ήταν 10 φορές ασθενέστερο από το θεωρητικά προβλεπόμενο. Η άρση της αντίφασης ήρθε από το συμπέρασμα πως η συγκεκριμένη έκρηξη προήλθε από τον μπλε γίγαντα Sanduleac -69° 202a, ένα μάλλον αμυδρό για εμάς αστέρι12ου μεγέθους, με διάμετρο 50 φορές μεγαλύτερη της ηλιακής, επιφανειακή θερμοκρασία περίπου 20.000 Κ και λαμπρότητα 100.000 μεγαλύτερη αυτής του Ήλιου. Λόγω της μεγάλης μάζας του, ο πρόδρομος αστέρας, υπολογίζεται πως είχε ηλικία 20•106  έτη, δηλαδή η εξέλιξή του ήταν ραγδαία.

Καθώς στο σημείο της έκρηξης δεν έχει εντοπιστεί ακόμη αστέρας νετρονίων, οι επιστήμονες εξετάζουν δύο ενδεχόμενα:

  • είτε τα πυκνά νέφη σκόνης που περιβάλλουν τον σχηματισμένο αστέρα νετρονίων τον καθιστούν αόρατο σε μας,
  • είτε ότι ο αστέρας απορρόφησε μεγάλη ποσότητα ύλης από το περιβάλλον του, ώστε πέρασε το όριο σχηματισμού μελανής οπής. Στην περίπτωση αυτή η πίεση των νετρονίων δεν μπόρεσε να συγκρατήσει την οριστική βαρυτική κατάρρευση και ο αστέρας κατέληξε σε Μελανή Οπή (black hole).

Πηγή

Ηλιακός Άνεμος

Ο ηλιακός άνεμος και η αλληλεπίδρασή του με τη Γήινη μαγνητόσφαιρα.

Ο ηλιακός άνεμος είναι ένα ρεύμα ηλεκτρικά φορτισμένων σωματιδίων που ρέουν από την ανώτερη ατμόσφαιρα του Ήλιου προς το Διάστημα.

Ο ήλιος εκτοξεύει ακατάπαυστα πλάσμααποτελούμενο κυρίως από πρωτόνια και ηλεκτρόνια,  προς όλες τις κατευθύνσεις, μορφοποιώντας την ηλιόσφαιρα, μια τεράστια φυσαλίδα που περιβάλει το ηλιακό σύστημα.Οι ιδιότητές του ηλιακού ανέμου δεν είναι σταθερές. Το στέμμα, το εξωτερικό στρώμα του ήλιου, φτάνει σε θερμοκρασίες που φτάνουν στους 2.106 Κ. Σε αυτές τις θερμοκρασίες, η βαρύτητα του ήλιου δεν μπορεί να συγκρατήσει τα ταχέως κινούμενα σωματίδια του πλάσματος, με αποτέλεσμα να διαστέλλεται προς τον Μεσοπλανητικό Χώρο με την μορφή αστρικού ανέμου. Η ηλιακή δραστηριότητα μετατοπίζεται κατά την διάρκεια του 11-ετούς κύκλου του ήλιου, ώστε ο αριθμός των ηλιακών κηλίδων, τα επίπεδα της ακτινοβολίας και το εκτινασσόμενο υλικό να αλλάζουν με την πάροδο του hχρόνου. Αυτές οι μεταβολές επηρεάζουν τις ιδιότητες του ηλιακού ανέμου, συμπεριλαμβανομένων των μαγνητικών του ιδιοτήτων, της θερμοκρασίας, της πυκνότητας και της ταχύτητάς του. Ο ηλιακός άνεμος επίσης διαφοροποιείται ανάλογα με το μέρος του ήλιου από το οποίο προέρχεται και το πόσο γρήγορα περιστρέφεται αυτό. 

Ηλιακός Άνεμος. Αλληλεπίδραση
με Γήινη Μαγνητόσφαιρα.

Ο ηλιακός άνεμος είναι υπερηχητικός με μέση ταχύτητα περίπου 400 km/s (4.105m/s). Με αυτήν την ταχύτητα, μία ποσότητα πλάσματος χρειάζεται περίπου 4 ημέρες για να φτάσει από τον Ήλιο στη Γη.  Ωστόσο στον ηλιακό άνεμο παρατηρούνται ροές δύο ταχυτήτων, έτσι ώστε να μιλάμε για αργό και για γρήγορο ηλιακό άνεμο.

Γιγάντια Στεμματική Οπή κοντά στον Βόρειο Ηλιακό Πόλο φωτογραφημένη από την ΝΑΣΑ στις 18 Ιουλίου, 2013.

Η ταχύτητα του ηλιακού ανέμου είναι μεγαλύτερη πάνω από τις Στεμματικές Οπές (δηλαδή τις σκοτεινές περιοχές του Ηλιακού Στέμματος – Coronal Holes) με τιμές που κυμαίνονται από 4.105 m/s έως 8.105 m/s. Η θερμοκρασία και η πίεση πάνω από τις στεμματικές οπές είναι χαμηλές και το μαγνητικό πεδίο ασθενές, ώστε οι δυναμικές μαγνητικές γραμμές προς το διάστημα να είναι ανοιχτές. Οι οπές αυτές εμφανίζονται στους πόλους και τα χαμηλά γεωγραφικά πλάτη και μεγιστοποιούνται όταν η ηλιακή δραστηριότητα βρίσκεται στο ελάχιστο. Οι θερμοκρασίες του γρήγορου ανέμου μπορούν να ανέλθουν στους 8.105 Κ. Είναι αρκετά σταθερός και χαρακτηρίζεται από χαμηλή μέση πυκνότητα (περίπου 3 ιόντα/cm3) στην 1AU. Περί το 4% των σωματιδίων του ανέμου είναι He.

Κατά το ηλιακό ελάχιστο, στην ζώνη γύρω από τον ισημερινό, και κατά το ηλιακό μέγιστο στις ενεργές περιοχές, ο ηλιακός άνεμος ταξιδεύει πιο αργά, με ταχύτητες που κυμαίνονται από 2,5.105 m/s έως 4.105 m/s. Οι θερμοκρασίες στον αργό άνεμο ανέρχονται στα 1,6.106 K. Η πυκνότητά του είναι 8 ιόντα/cm3 στη 1 AU και η πυκνότητα ροής του διπλάσια από αυτήν του γρήγορου ηλιακού ανέμου. Σε αντίθεση με τον γρήγορο ηλιακό άνεμο, ο αργός ηλιακός άνεμος είναι έντονα μεταβλητός και τυρβώδης.

Η εικόνα δείχνει τις μαγνητικές γραμμές του Ήλιου που εκτείνονται από ολόκληρη την επιφάνειά του προς τον Μεσοπλανητικό Χώρο.

Αλληλεπίδραση με την Γη


Παρόλο που ο ήλιος βρίσκεται σε απόσταση 149 εκατομμυρίων χιλιομέτρων από τη Γη, η ακατάπαυστη δραστηριότητά του έχει ως αποτέλεσμα μια διαρκή αλληλεπίδραση μαζί της, πέρα από το ορατό φως και την θερμότητα που της προσφέρει. Από τον σταθερό ηλιακό άνεμο ως τους απρόβλεπτους βομβαρδισμούς από τις ηλιακές εκλάμψεις (Solar Flares) και τις στεμματικές εκτοξεύσεις μάζας (Coronal Mass Ejection), η Γη αισθάνεται συχνά την δραστηριότητα της αστρικής της συντρόφου.

Καθώς ο άνεμος απομακρύνεται από τον ήλιο, μεταφέροντας ταχέως κινούμενα φορτισμένα σωματίδια, μεταφέρει «παγωμένο» το μαγνητικό πεδίο του ήλιου. Συνεπώς, ο μαγνητισμένος ηλιακός άνεμος πλάσματος, παρασύρει προς το διάστημα το Ηλιακό Μαγνητικό Πεδίο, σχηματίζοντας το Διαπλανητικό Μαγνητικό πεδίο.  Κατευθυνόμενος προς όλες τις διευθύνσεις, φτάνει και στη Γη, περικυκλώνοντάς την συνεχώς και προκαλεί ορισμένα ενδιαφέροντα φαινόμενα.

Όταν η ύλη που μεταφέρει ο ηλιακός άνεμος φτάνει στην επιφάνεια ενός πλανήτη, η ακτινοβολία του μπορεί να προκαλέσει σοβαρή ζημιά σε κάθε ίχνος ζωής που πιθανόν υπάρχει εκεί. Το γήινο μαγνητικό πεδίο, λειτουργεί σαν ασπίδα, ανακατευθύνοντας το υλικό γύρω από τον πλανήτη, έτσι ώστε να ρέει πέρα από αυτόν. Η «δύναμη» του ηλιακού ανέμου, παραμορφώνει το μαγνητικό πεδίο της Γης, ώστε αυτό να συμπιέζεται προς την κατεύθυνση του ήλιου, δηλαδή στην ηλιόλουστη μεριά της Γης, και να επεκτείνεται προς την αντίθετη μεριά, εκείνην της νύχτας.

H μαγνητική προστατευτική ασπίδα της Γης.  Τα σωματίδια του ηλιακού ανέμου 
εκτρέπονται από αυτήν ώστε να μην φτάνουν στην Γη. Στην εικόνα φαίνεται το στάσιμο 
τοξοειδές κρουστικό κύμα (Bow Shock) που δημιουργείται, καθώς τα ταχέως κινούμενα σωματίδια του ηλιακού ανέμου επιβραδύνονται απότομα από την μαγνητόσφαιρα της Γης.

Μερικές φορές ο ήλιος εκτινάσσει μεγάλες ποσότητες πλάσματος με κολοσσιαίες εκρήξεις, γνωστές ως στεμματικές εκτοξεύσεις μάζας.  Πιο συχνές κατά την περίοδο μέγιστης δραστηριότητας του ηλιακού κύκλου, γνωστή ως ηλιακό μέγιστο, οι στεμματικές εκτοξεύσεις μάζας έχουν ισχυρότερες επιπτώσεις στη Γη από τον κοινό ηλιακό άνεμο.

Όταν ο ηλιακός άνεμος μεταφέρει υλικό από εκτοξεύσεις μάζας ή άλλες ισχυρές εκρήξεις ακτινοβολίας στο μαγνητικό πεδίο ενός πλανήτη, μπορεί να προκαλέσει συμπίεση του πεδίου πίσω από τον πλανήτη (στην σκοτεινή του πλευρά)  και επανασύνδεση των μαγνητικών γραμμών. Το φαινόμενο αυτό ονομάζεται μαγνητική επανασύνδεση. Τα φορτισμένα σωματίδια του ηλιακού ανέμου ρέουν πίσω, προς τους μαγνητικούς πόλους του πλανήτη, προκαλώντας όμορφους σχηματισμούς στην ανώτερη ατμόσφαιρα, γνωστούς ως Πολικό Σέλας (βόρειο και νότιο).

Βόρειο Σέλας πάνω από το Ivalo, Βόρεια Λαπωνία, Φινλανδία, 22 Ιανουαρίου, 2012
Βόρειο Σέλας στο Kattfjord της Νορβηγίας
Βόρειο Σέλας πάνω από την Βόρεια Νορβηγία, 22 Ιανουαρίου, 2012

Παρόλο που μερικά ουράνια σώματα προστατεύονται από το μαγνητικό τους πεδίο, κάποια άλλα δεν τυγχάνουν τέτοιας προστασίας. Η σελήνη, για παράδειγμα, ο δορυφόρος της Γης, δεν έχει ασπίδα προστασίας και για τον λόγο αυτόν είναι ακάλυπτη στις «διαθέσεις» του ηλιακού ανέμου. Ο Ερμής, ο κοντινότερος σε μας πλανήτης, έχει μαγνητικό πεδίο που τον προασπίζει από τον κανονικό μέσο ηλιακό άνεμο, αλλά όχι από τις πιο ισχυρές αναλάμψεις όπως οι στεμματικές εκτοξεύσεις μάζας.

Όταν το γρήγορο και το αργό ρεύμα ανέμου αλληλεπιδρούν (συγκεκριμένα όταν ένα γρήγορο ρεύμα συναντήσει ένα προπορευόμενο αργό), δημιουργούν περιοχές υψηλής πυκνότητας, γνωστές ως (συν)περιστρεφόμενες περιοχές αλληλεπίδρασης, που πυροδοτούν γεωμαγνητικές καταιγίδες, όταν αλληλεπιδρούν με την ατμόσφαιρα της Γης.

Περιστρεφόμενη Περιοχή Αλληλεπίδρασης. Διακρίνεται η δημιουργία δύο κρουστικών κυμάτων αλληλεπίδρασης γρήγορου και αργού ρεύματος ηλιακού ανέμου, του ηγούμενου (Forward Wave) και του ανάστροφου (Reverse Wave) και η μεταξύ τους συν-περιστρεφόμενη περιοχή.

«Lucy», ένα Διαμάντι στον Ουρανό…

H «πολύτιμη» μεταμόρφωση ενός λευκού νάνου.

Διαβάζοντας πρώτη φορά για την Lucy, μου ήρθε στο νου το «Μαγικό Λυχνάρι του Αλαντίν», όπου το λυχνάρι έπρεπε να το πάρει κάποιος με αδαμάντινο χαρακτήρα και καθαρή ψυχή. Ίσως όχι και τόσο άτοπο, μιας και… τα μυστήρια του κόσμου μοιάζουν να συναντιόνται στην βάση του.

Στην Lucy, λοιπόν, εδράζεται το μεγαλύτερο διαμάντι που παρατηρήθηκε ποτέ από άνθρωπο. Φυσικά, δεν βρίσκεται στην Γη, αλλά μακριά, στον Γαλαξία μας. Ίσως φανεί παράξενο, όμως είναι το πτώμα του αστέρα BMP 37093, ενός λευκού νάνου, που βρίσκεται σε απόσταση 50 ετών φωτός από τη Γη, σε μια περιοχή του ουρανού που ανήκει στον αστερισμό του Κενταύρου. Πρόκειται δηλαδή για την «πεπιεσμένη», γερασμένη καρδιά ενός αστέρα, που κάποτε ήταν λαμπρός σαν τον ήλιο μας και προς το τέλος της ζωής του, αφού χρησιμοποίησε όλα τα διαθέσιμα πυρηνικά του καύσιμα, άρχισε σταδιακά να σβήνει και να συρρικνώνεται.

Η Lucy βρίσκεται σε απόσταση περίπου 50 ετών φωτός από τη Γη μας.

Ένα έτος φωτός είναι η απόσταση στην οποία ταξιδεύει το φως στο διάστημα σε ενός έτους.
Ισούται με 5,87 τρισεκατομμύρια χιλιόμετρα.

Ο λευκός αυτός παλλόμενος νάνος, είναι ένα τεράστιο κομμάτι κρυσταλλικού άνθρακα στην καρδιά του οποίου βρίσκεται ένα πολύτιμο διαμάντι που ζυγίζει 10 δις-τρις-τρις (1034) καράτια. Η αξία του είναι πραγματικά ανυπολόγιστη, αν σκεφτούμε το γεγονός πως οι μεγαλύτεροι πολύτιμοι λίθοι που έχουν βρεθεί μέχρι σήμερα στην Γη, είναι το Διαμάντι του Χρυσού Ιωβηλαίου, 545 καρατίων, που ανακαλύφθηκε το 1985 στη Νότια Αφρική και βρίσκεται στο Βασιλικό Παλάτι της Ταϊλάνδης και το Αστέρι της Αφρικής, 530 καρατίων, το οποίο δωρήθηκε το 1905 στον Μονάρχη της Βρετανίας Έντουαρντ Ζ’ και αποτελεί μέχρι σήμερα μέρος των κοσμημάτων του Βρετανικού Στέμματος.

Μετά την ανακάλυψή του αστέρα BMP 37093, το 2004, οι αστρονόμοι του έδωσαν το όνομα «Lucy», χάρη στο τραγούδι των Beatles «Lucy in The Sky with Diamonds», που γράφτηκε από τον John Lennon το 1967.

Η αδαμάντινη καρδιά της Lucy.

Το γιγάντιο αυτό – για τα ανθρώπινα μέτρα – διαμάντι, δεν είναι παρά ένα μικροσκοπικό – για τα κοσμολογικά δεδομένα- συμπαγές ουράνιο σώμα, με διάμετρο της τάξης των 4.000 χιλιομέτρων, δηλαδή περί τα 2/3 της Γήινης διαμέτρου ή – για να μπορέσουμε να κάνουμε μια «αστρική» σύγκριση – μόλις τα 3/1000 της Ηλιακής διαμέτρου.  Αυτό σημαίνει ότι η μάζα της Lucy, περίπου ίση με την Ηλιακή, είναι συγκεντρωμένη σε μια πολύ μικρή κοσμική μπάλα. Είναι πλέον πολύ αμυδρή, φωτοβολώντας μόνο με το 1/2000 της οπτικής λαμπρότητας του Ήλιου.

Η Lucy, όπως όλοι οι λευκοί νάνοι, πιθανότατα αποτελείται κυρίως από Άνθρακα και Οξυγόνο, προϊόντα των θερμοπυρηνικών αντιδράσεων σύντηξης πυρήνων ηλίου, που έλαβαν χώρα στο παρελθόν. Περιβάλλεται από μία πολύ λεπτή ατμόσφαιρα από Υδρογόνο και Ήλιο.

Από την δεκαετία του ’60 οι αστρονόμοι υποψιάζονταν ότι το εσωτερικό των λευκών νάνων αποκτά κρυσταλλική δομή, πράγμα που ο BMP 37093 φαίνεται να επιβεβαιώνει.

Καθώς ένα αστέρι όπως η Lucy ή ακόμη ο ήλιος μας πεθαίνει, ακτινοβολεί στο διάστημα ενέργεια που δεν μπορεί να αναπληρώσει, καθώς τα καύσιμά του έχουν καταναλωθεί. Έτσι, αργά αλλά σταθερά, κρυώνει. Ένα τέτοιο άστρο αρχίζει να πάλλεται όταν η θερμοκρασία της επιφάνειας του πυρήνα του πέσει περίπου στους 12.000 βαθμούς Κέλβιν. 

H Lucy, λοιπόν, πάλλεται σαν ένα γιγάντιο γκονγκ. Οι εσωτερικοί της παλμοί μοιάζουν με τα σεισμικά κύματα στο εσωτερικό της Γης. Οι Αστρονόμοι κατάφεραν να μετρήσουν τους παλμούς αυτούς, όπως περίπου οι γεωλόγοι, με την χρήση σεισμογράφων, μετρούν τους σεισμούς στο γήινο εσωτερικό. Οι μετρήσεις τους βοήθησαν να εξερευνήσουν το κρυμμένο εσωτερικό της Lucy, υποδεικνύοντας ότι είναι στερεοποιημένο (κρυσταλλικό) έτσι ώστε να σχηματίσει το μεγαλύτερο διαμάντι του Γαλαξία.  

H Lucy δεν είναι ορατή στη Γη με γυμνό οφθαλμό. Μπορεί να παρατηρηθεί καλύτερα από το Νότιο Ημισφαίριο από τον Μάρτιο ως τον Ιούνιο. Οι αστρονόμοι υπολογίζουν ότι σε 5 δισεκατομμύρια χρόνια από σήμερα, ο ήλιος μας, αφού διασχίσει «γρήγορα» τον κλάδο των Ερυθρών Γιγάντων, θα πεθάνει, καταλήγοντας σε έναν λευκό νάνο. Έπειτα από περίπου 2 δισεκατομμύρια χρόνια, ο ρευστός πυρήνας του θα κρυσταλλωθεί επίσης, αφήνοντας ένα τεράστιο διαμάντι, αμύθητης αξίας, στο κέντρο του ηλιακού μας συστήματος.

Ουράνια Σώματα: Καινοφανείς Αστέρες

Χαρακτηριστικά και μηχανισμός σχηματισμού των εκρηκτικώς μεταβλητών αστέρων.

Πρόκειται για έναν εκρηκτικώς μεταβλητό αστέρα.

Ως καινοφανής (stella nova), χαρακτηρίζεται ένας αστέρας, που εμφανίζει απότομη μεταβολή της φωτεινότητας και της φαινόμενης λαμπρότητάς του.

Εμφανίζεται ξαφνικά σε μια περιοχή του ουρανού, όπου συνήθως υπήρχε ένα άστρο αόρατο δια γυμνού οφθαλμού, αυξάνοντας την φαινόμενη λαμπρότητά του από 7 μέχρι και 12 μεγέθη σε χρονικό διάστημα που διαφέρει για κάθε καινοφανή και κυμαίνεται από 1 έως 100 ημέρες. Στη συνέχεια επιστρέφει αργά στην αρχική του λαμπρότητα, σε διάστημα ημερών, εβδομάδων ή και μηνών. Σε γενικές γραμμές οι ταχύτεροι novae είναι ισχυρότεροι.

Οι εκρήξεις των καινοφανών είναι βίαιες κι εκτοξεύουν στον μεσοαστρικό χώρο μεγάλα ποσά ύλης κι ενέργειας. Μία καινοφανής ανάλαμψη μπορεί να απελευθερώσει σε διάστημα μερικών εκατοντάδων ημερών όση ενέργεια απελευθερώνει ο ήλιος σε περισσότερα από 105 έτη. Ωστόσο δεν μπορούν να συγκριθούν σε ισχύ με εκείνες των υπερκαινοφανών αστέρων (supernova), καθώς η αποβολή υλικού είναι πολύ μικρότερη (περίπου 10-4 – 10-5 ηλιακές μάζες με ταχύτητα ~103 km/s) και αφήνει το σύστημα σχεδόν αναλλοίωτο. Για τον λόγο αυτόν η καινοφανής ανάλαμψη είναι δυνατόν να επαναληφθεί.

Οι καινοφανείς εκρήξεις λαμβάνουν χώρα στα επιφανειακά στρώματα αστέρων που στην προ-nova φάση τους ήταν λευκοί νάνοι ή υπονάνοι. Στο διάγραμμα Hertzsprung – Russell οι καινοφανείς αστέρες βρίσκονται συνήθως κάτω από την Κύρια Ακολουθία και πάνω από τους λευκούς νάνους.

Η συχνότητα εμφάνισής τους στην Ουράνια Σφαίρα είναι μικρή. Σε γενικές γραμμές παρατηρούνται περί τους 40 καινοφανείς ανά έτος. Στον Γαλαξία μας υπολογίζεται πως αναλάμπoυν 50 καινοφανείς ανά έτος από τους οποίους είναι παρατηρήσιμοι 2 έως 3.

Οι καινοφανείς αποτελούν ένα ακόμη πολύτιμο εργαστήριο της φύσης, η παρατήρηση και μελέτη του οποίου συμβάλλει εξαιρετικά στην κατανόηση ενός ευρέου φάσματος αστροφυσικών φαινομένων. Τέτοια φαινόμενα είναι για παράδειγμα η μεταφορά μάζας σε στενά δυαδικά αστρικά συστήματα, οι θερμοπυρηνικές εκρήξεις (nuclear powered outbursts), ο σχηματισμός σκόνης, η απώλεια μάζας από ερυθρούς γίγαντες και πολλά άλλα.

Όπως θα δούμε στη συνέχεια, οι επαναληπτικοί καινοφανείς έχουν προταθεί ως πρόδρομοι (προγεννήτορες) των Supernovae Ia αναλάμψεων.

Εξάλλου η συστηματική εξερεύνηση των νεφελωδών υπολειμμάτων των καινοφανών μπορεί, μέσω της μελέτης των οπτικών εικόνων (όπου είναι διαθέσιμες), της φασματοσκοπικής τους ανάλυσης και της σύγκρισης των παρατηρησιακών δεδομένων με τα υπάρχοντα μοντέλα, να έχει μία ευρύτερη -της προφανούς- εφαρμογή, όπως για παράδειγμα στην κατανόηση του τρόπου σχηματισμού των πρωτοπλανητικών νεφελωμάτων.

Ιστορικά στοιχεία


Η ονομασία των καινοφανών αστέρων οφείλεται μάλλον στον αστρονόμο Τύχωνα Μπραχέ (Tycho Brahé ), ο οποίος το 1572 μ.Χ. εντόπισε τον υπερκαινοφανή που φέρει το όνομά του, στην περιοχή του αστερισμού της Κασσιόπης, αποδίδοντάς του το όνομα nova stella (νέο αστέρι).

Καθώς οι καινοφανείς εμφανίζονται ξαφνικά σε ένα σημείο, όπου προηγουμένως δεν φαινόταν να υπάρχει τίποτε, έδιναν την εντύπωση στους αστρονόμους του μεσαίωνα ότι επρόκειτο για καινούρια άστρα. Ουσιαστικά όμως αποτελούν γερασμένους αστέρες, η ανάλαμψη των οποίων είναι ένα μεγαλειώδες σημάδι του τέλους που πλησιάζει.

Παρόλο που οι καινοφανείς αναλάμψεις έχουν παρατηρηθεί εδώ και 2.000 χρόνια, μόνο σχετικά πρόσφατα άρχισε να γίνεται κατανοητός ο μηχανισμός δημιουργίας τους.

  • Το 1866 οι Haggins και Miller παρουσιάζουν την πρώτη οπτική φασματοσκοπική μελέτη καινοφανούς.
  • Το 1901 ο Sidgreaves βρίσκει φασματικές γραμμές Νέου 3869, 3968 Ǻ στον nova GK Per, κάνοντας λόγο για διαφορετικούς (χημικά) τύπους καινοφανών.
  • Οι Pickering (1894), Pike (1929) και άλλοι ερμηνεύουν τα φασματοσκοπικά χαρακτηριστικά των καινοφανών με την εκτίναξη ενός αερίου κελύφους από τον αστέρα.
  • Οι Stratton και Manning το 1939 υποδεικνύουν ότι το ελάχιστο της καμπύλης φωτός των καινοφανών οφείλεται στον σχηματισμό σκόνης.
  • Ο Schatzmann το 1951 διατυπώνει την άποψη ότι η έκρηξη προκαλείται από πυρηνικές αντιδράσεις σύντηξης [3He]
  • Ο Walker το 1954 ανακαλύπτει την δυαδική φύση των καινοφανών.
  • Ο Robert Kraft (1963, 1964) αποδεικνύει ότι η δυαδικότητα είναι μια κοινή ιδιότητα των κατακλυσμικών μεταβλητών (των καινοφανών συγκεκριμένα), συμβάλλοντας αποφασιστικά στην εξέλιξη των ιδεών του μηχανισμού δημιουργίας των novae-εκρήξεων.
  • Ο Sparks το 1969 παρουσιάζει την πρώτη υδροδυναμική προσομοίωση μιας καινοφανούς ανάλαμψης.

Μηχανισμός δημιουργίας έκρηξης καινοφανούς

Την θεωρία του Kraft για τους novae ενστερνίστηκαν πολλοί αστρονόμοι, καθώς φαίνεται να αποτελεί μια αρκετά καλή προσέγγιση της πραγματικότητας και να συμφωνεί με τις φασματοσκοπικές παρατηρήσεις.

Τροχιές διπλού συστήματος αστέρων

Σύμφωνα λοιπόν με την κρατούσα άποψη, οι καινοφανείς εκρήξεις είναι το αποτέλεσμα της αλληλεπίδρασης αστέρων που είναι μέλη διπλών ημιαποχωρισμένων συστημάτων, οι οποίοι λόγω της αμοιβαίας βαρυτικής τους αλληλεπίδρασης περιστρέφονται συγχρονισμένα γύρω από το κοινό κέντρο μάζας τους (έτσι ώστε να έχουν την ίδια περίοδο περιφοράς και περιστροφής), και στους οποίους ο θερμός αστέρας (αποχωρισμένο μέλος) συσσωρεύει υλικό από τον ψυχρό συνοδό του.

Κατά την οπτική παρατήρηση τέτοιων συστημάτων, δεν μπορούμε να διακρίνουμε τα δύο μέλη. Έτσι, εμφανίζονται στον ουρανό ως σημειακή πηγή.

Εφόσον τα μέλη των διπλών και πολλαπλών συστημάτων εκτιμάται ότι υπερβαίνουν το 60% του συνόλου των αστέρων του Σύμπαντος, παρουσιάζει ενδιαφέρον η μελέτη της εξέλιξής τους, ιδιαίτερα εκείνων που συσχετίζονται με τις καινοφανείς εκρήξεις και που ανήκουν στα στενά δυαδικά αστρικά συστήματα (με τον όρο στενά δυαδικά αστρικά συστήματα, χαρακτηρίζονται γενικά ζεύγη αστέρων η απόσταση των οποίων είναι τέτοια ώστε η εξέλιξή τους να μην είναι ανεξάρτητη). Αποτελούνται από αστέρες, μεταξύ των οποίων ο ένας παρουσιάζει ταχύτερη εξέλιξη από τον άλλον, καταλήγοντας σε ένα μικρό, συμπαγές αντικείμενο (Λευκός Νάνος). Το άλλο μέλος είναι ένας αστέρας μικρής επιφανειακής θερμοκρασίας που έχει εξαντλήσει τα πυρηνικά του αποθέματα υδρογόνου και διογκούμενο μετατρέπεται σε υπογίγαντα.

Σύστημα Ημι-αποχωρισμένων Δυαδικών Αστέρων

Καθώς το σύστημα των αστέρων χάνει τροχιακή στροφορμή, εξ’ αιτίας του αστρικού ανέμου, τα δύο μέλη πλησιάζουν ολοένα μεταξύ τους. Η εξέλιξη αστέρων τέτοιων στενών δυαδικών συστημάτων, οι οποίοι όπως προαναφέρθηκε περιφέρονται συγχρονισμένα, περιγράφεται πολύ καλά με το γεωμετρικό μοντέλο του Roche. Σύμφωνα με το μοντέλο αυτό, κάθε αστέρας του συστήματος χαρακτηρίζεται από μία ισοδυναμική επιφάνεια, η οποία οριοθετεί την περιοχή γύρω του, όπου το υλικό είναι βαρυτικά παγιδευμένο από αυτόν και ονομάζεται λοβός Roche. Ο λοβός Roche ουσιαστικά οριοθετεί το μέγιστο μέγεθος που μπορεί να έχει ο αστέρας, ώστε να μην λαμβάνει χώρα μεταφορά μάζας προς τον συνοδό του. Το σημείο στο οποίο τέμνονται οι λοβοί Roche ενός διπλού συστήματος αστέρων βρίσκεται πάνω στην ευθεία που ενώνει τα κέντρα των δύο αστέρων και ονομάζεται πρώτο σημείο Lagrange (L1).

Ο μηχανισμός μιας (καινοφανούς) Νοβα ανάλαμψης

Επιστρέφοντας στο σύστημά μας, που οδεύει προς καινοφανή ανάλαμψη, σημειώνουμε ότι καθώς ο υπογίγαντας αστέρας διογκώνεται, «γεμίζει» κάποτε τον λοβό Roche. Οι παλιρροϊκές δυνάμεις που αναπτύσσονται μεταξύ των δύο αστέρων, έχουν σαν αποτέλεσμα την ροή της μάζας που υπερχειλίζει τον λοβό Roche, από τον συνοδό αστέρα προς τον λευκό νάνο, δια μέσω του σημείου L1.

Λόγω της διατήρησης της στροφορμής, το υλικό αυτό δεν μπορεί να φτάσει κατευθείαν στην επιφάνεια του λευκού νάνου. Έτσι σε συστήματα των οποίων ο Λευκός Νάνος δεν διαθέτει ένα σημαντικό Μαγνητικό Πεδίο, το προσπίπτον αέριο δημιουργεί γύρω του έναν δίσκο ύλης, ο οποίος ονομάζεται δίσκος επαύξησης ή συσσώρευσης (accretion disk) που συνήθως επισκιάζει τα δύο άστρα στο ορατό φως.

Σχηματισμός Δίσκου Επαύξησης

Για την κατανόηση του τρόπου μεταφοράς της μάζας από τον συνοδό προς τον πρωτεύοντα αστέρα και των φαινομένων που αυτή συνεπάγεται, είναι σημαντικό να τονιστεί ότι αυτή δεν προστίθεται απλά σε ένα «κανονικό» αστέρα της Κύριας Ακολουθίας, αλλά ουσιαστικά καταποντίζεται προς ένα μικροσκοπικό ουράνιο σώμα με τεράστια πυκνότητα ύλης σε εκφυλισμένη μορφή (ένας λευκός νάνος έχει μάζα συγκρίσιμη με την ηλιακή και διαστάσεις συγκρίσιμες με τις γήινες).

Ο δίσκος επαύξησης (συσσώρευσης) μάζας που σχηματίζεται γύρω από τον λευκό νάνο, ομοιάζει σε πολλά σημεία με τον δίσκο επαύξησης που σχηματίζεται γύρω από έναν πρωτοαστέρα. Όπως και κατά την διαδικασία σχηματισμού ενός αστέρα, ο δίσκος αυτός ουσιαστικά παρέχει έναν απαραίτητο «σταθμό» στην πορεία του υλικού που κατευθύνεται προς τον λευκό νάνο, καθώς η στροφορμή του είναι μεγάλη ώστε να μπορεί απλά να «προσγειωθεί» στην επιφάνειά του.

Το βαρυτικό πεδίο του λευκού νάνου είναι ιδιαίτερα ισχυρό με αποτέλεσμα το υλικό του συνοδού αστέρα που καταλήγει σε αυτόν, ουσιαστικά να πέφτει προς μια απίστευτα βαθιά βαρυτική «παγίδα». Η διαδικασία αυτή απελευθερώνει ένα τεράστιο ποσό βαρυτικής δυναμικής ενέργειας που μετατρέπεται σε Θερμική Ενέργεια. Η θερμοκρασία του σημείου στο οποίο η ροή του υλικού συναντά τον δίσκο επαύξησης μπορεί να ανέλθει σε μερικά εκατομμύρια βαθμούς Kelvin, με αποτέλεσμα να ακτινοβολεί έντονα, τόσο στην υπεριώδη περιοχή όσο και στην περιοχή των ακτίνων – Χ του ηλεκτρομαγνητικού φάσματος.

Τελικά το υλικό που προσωρινά σταθμεύει στον δίσκο επαύξησης εξαναγκάζεται σε σπειροειδή τροχιά προς την επιφάνεια του θερμού – εκφυλισμένου λευκού νάνου και συμπιέζεται από το τεράστιο Βαρυτικό Πεδίο του, αποκτώντας πυκνότητα που αγγίζει εκείνην του ίδιου του αστέρα. Καθώς συσσωρεύεται υλικό στην επιφάνειά του λευκού νάνου, αρχίζει να συρρικνώνεται. Η πυκνότητά του ολοένα αυξάνεται ενώ η συνεχιζόμενη απελευθέρωση βαρυτικής δυναμικής ενέργειας θερμαίνει περισσότερο τον αστέρα.

Υπό την προϋπόθεση ότι τo υλικό του δίσκου επαύξησης του λευκού νάνου προέρχεται από τα ανώτερα στρώματα του συνοδού αστέρα, στα οποία δεν έχει ξεκινήσει ακόμη η καύση του Υδρογόνου προς βαρύτερα στοιχεία, συνάγεται το συμπέρασμα ότι είναι πλούσιο σε Υδρογόνο (Η) και δευτερευόντως σε Ήλιο (He).

Έτσι, καθώς η πυκνότητα του άστρου αυξάνεται, η θερμοκρασία ανέρχεται στο σημείο πυροδότησης της καύσης του Υδρογόνου. Όμως εδώ δεν πρόκειται για την ελεγχόμενη σύντηξη του υδρογόνου που λαμβάνει χώρα στο εσωτερικό του ήλιου αλλά για μία ανεξέλεγκτη διεργασία εκρηκτικών θερμοπυρηνικών αντιδράσεων, η οποία για θερμοκρασίες σχετικά μικρές (Τ<107 Κ), λαμβάνει χώρα σε αέριο που βρίσκεται σε εκφυλισμένη κατάσταση, δηλαδή δεν υπακούει στους νόμους των ιδανικών αερίων και η πίεση είναι ανεξάρτητη της θερμοκρασίας και περίπου σταθερή.

Η διεργασία αυτή απελευθερώνει ταχύτατα μεγάλα ποσά ενέργειας που αυξάνει ακόμη περισσότερο την θερμοκρασία και αυτή με την σειρά της αυξάνει τον ρυθμό καύσης του Υδρογόνου. Όταν η θερμοκρασία υπερβεί το όριο των 107 Κ, ο εκφυλισμός αίρεται και η πίεση αυξάνει ανάλογα με την θερμοκρασία, όπως ακριβώς αναμένεται για ένα ιδανικό αέριο. Επομένως, από αυτό το σημείο και μετά, την ραγδαία αύξηση της θερμοκρασίας ακολουθεί μια εξίσου ραγδαία αύξηση της πίεσης.

Το αποτέλεσμα είναι μία μεγάλης ισχύος (nova) έκρηξη, που εκτινάσσει με πολύ μεγάλη ταχύτητα ένα λεπτό επιφανειακό στρώμα του αστέρα στο Διάστημα.

Καινοφανής (Νόβα)

Οι καινοφανείς φτάνουν στο μέγιστο της λαμπρότητάς τους σε λίγες μόνο ώρες, και για ένα σύντομο χρονικό διάστημα, μπορούν να είναι 5.106 φορές λαμπρότερος από τον ήλιο. Στις εβδομάδες που ακολουθούν την έκρηξη η φωτεινότητά τους μειώνεται γρήγορα. Μερικές φορές είναι δυνατόν να είναι ορατοί για αρκετά έτη. Σε αυτό το χρονικό διάστημα η λάμψη του διαστελλόμενου νέφους του υλικού που εκτοξεύτηκε, τροφοδοτείται από την διάσπαση των ραδιενεργών ισοτόπων που δημιουργούνται κατά την διάρκεια της ανάλαμψης.

Μετά την έκρηξη αποκαθίσταται εκ νέου η ροή μάζας από τον γίγαντα προς τον λευκό νάνο και είναι δυνατόν να προκληθεί νέα ανάλαμψη. Έτσι, η παραπάνω διαδικασία μπορεί να επαναληφθεί αρκετές φορές, με υλικό που επικάθεται και αναφλέγεται επαναλαμβανόμενα στην επιφάνεια του λευκού νάνου.

Η χρονική περίοδος μεταξύ δύο διαδοχικών nova εκρήξεων εξαρτάται από τον ρυθμό συσσώρευσης ύλης στην επιφάνεια του λευκού νάνου. Στις περισσότερες περιπτώσεις οι αναλάμψεις απέχουν χιλιάδες χρόνια, ώστε οι περισσότεροι έχουν παρατηρηθεί μόνο μια φορά κατά τους ιστορικούς χρόνους. Ωστόσο ορισμένοι καινοφανείς εκρήγνυνται εκ νέου σε πολύ κοντινά χρονικά διαστήματα (π.χ. μία φορά ανά δεκαετία).

Είναι πολύ πιθανόν, η επαναλαμβανόμενη αυτή διαδικασία σε ένα αστρικό δυαδικό σύστημα μικρής μάζας, να οδηγήσει τελικά στον σχηματισμό ενός δεύτερου λευκού νάνου και την δημιουργία ενός συστήματος δύο συμπαγών ουράνιων αντικειμένων.

Σήμερα πιστεύεται ότι η συν τω χρόνω προσαύξηση μάζας στον λευκό νάνο ενός κατακλυσμικού διπλού συστήματος αστέρων και η επαγόμενη αυτής εκρηκτική ανάφλεξη του άνθρακα (που είναι το κύριο συστατικό του), είναι η γενεσιουργός αιτία της κολοσσιαίας αστρικής ανάλαμψης κάποιων υπερκαινοφανών τύπου Ia.

Μετά από μία μακρόχρονη ροή μάζας από τον συνοδό αστέρα προς τον λευκό νάνο (διάρκειας εκατομμυρίων ετών), και πιθανότατα αμέτρητες καινοφανείς αναλάμψεις, η μάζα του λευκού νάνου αυξάνεται αργά. Όταν υπερβεί το όριο Chandrasekhar (1,4 ηλιακές μάζες), η θερμοκρασία του έχει αυξηθεί τόσο ώστε να αρχίσουν οι θερμοπυρηνικές αντιδράσεις σύντηξης του Άνθρακα στον κεντρικό πυρήνα, οι οποίες γίνονται ταχύτατα και εκλύουν τεράστια ποσά ενέργειας που θερμαίνει και εκτινάσσει τα εξωτερικά στρώματα του Άστρου. Η έκρηξη είναι τόσο βίαιη που καταστρέφει ολοκληρωτικά τον λευκό νάνο, χωρίς να αφήσει πίσω της κάποιο συμπαγές υπόλειμμά του.

Ταξινόμηση καινοφανών

Μία τυπική ταξινόμηση των καινοφανών αστέρων περιλαμβάνει τις ακόλουθες κατηγορίες:

  • Κλασσικούς καινοφανείς (classical novæ). Στην κατηγορία αυτή ανήκουν καινοφανείς αστέρες για τους οποίους έχει παρατηρηθεί μία μόνο ανάλαμψη. Πρόκειται ουσιαστικά για καινοφανείς αστέρες οι διαδοχικές αναλαμπές των οποίων απέχουν 10.000-100.000 έτη. Η μεγάλη χρονική αυτή απόσταση, καθιστά αδύνατη την καταγραφή περισσότερων από μία αναλαμπών κατά τους ιστορικούς χρόνους. Η συμπεριφορά τους ερμηνεύεται ικανοποιητικά με το προαναφερθέν μοντέλο θερμοπυρηνικής έκρηξης του πλούσιου σε Υδρογόνο υλικού, το οποίο επισυσσωρεύεται στην επιφάνεια του πρωτεύοντος αστέρα (λευκού νάνου), σε ένα κλειστό δυαδικό σύστημα αστέρων.
  • Mικροκαινοφανείς ή νάνους καινοφανείς (dwarf novæ). Χαρακτηρίζονται έτσι θερμοί, μικρού μεγέθους μεταβλητοί αστέρες, που δίνουν ξαφνικές αναλάμψεις, εναλλασσόμενες με περιόδους ηρεμίας. Τα χρονικά διαστήματα μεταξύ των αναλάμψεων κυμαίνονται από 10 ημέρες έως μερικές δεκάδες έτη, Η διάρκεια μιας μέσης ανάλαμψης κυμαίνεται από 2 – 20 ημέρες. Διακρίνουμε τρεις υποκατηγορίες μικροκαινοφανών, ανάλογα με την μορφολογία της καμπύλης φωτός της ανάλαμψης:
    • Z-Cam (Ζ-Καμηλοπάρδαλης),
    • SU UMa (SU Μεγάλης Άρκτου),
    • U Gem (U Διδύμων).
  • Επαναληπτικούς καινοφανείς (recurrent novæ). Πρόκειται για καινοφανείς που δίνουν επαναλαμβανόμενες εκρήξεις, σε σύντομα σχετικά χρονικά διαστήματα, έτσι ώστε να έχουν καταγραφεί αρκετές από αυτές από Γήινους παρατηρητές. Είναι σημαντικοί διότι επιτρέπουν την παρατήρηση των καινοφανών αστέρων πριν και μετά το γεγονός της ανάλαμψης. Η διάκριση μεταξύ επαναληπτικών και νάνων καινοφανών γίνεται φασματοσκοπικά: στους επαναληπτικούς (όπως και στους κλασικούς καινοφανείς) εκτινάσσεται ένα αέριο κέλυφος με υψηλή ταχύτητα. Στους νάνους καινοφανείς δεν λαμβάνει χώρα βίαιη εκτίναξη ύλης, αλλά μπορεί να υπάρχει απλά ένας ενισχυμένος αστρικός άνεμος κατά τη διάρκεια της ανάλαμψης.
  • Καινοφανείς ακτίνων Χ (X-ray novæ). Ουράνιες πηγές ακτινων Χ, που εμφανίζονται ξαφνικά στον ουρανό, αυξάνοντας την ισχύ τους σε ένα διάστημα λίγων ημερών και στη συνέχεια εξασθενούν γοργά, με συνολική διάρκεια ζωής λίγων μηνών. Δεν εμφανίζουν σταθερή περιοδικότητα. Πρόκειται για διπλά, κλειστά συστήματα αστέρων, στα οποία το συμπαγές, πρωτεύον ουράνιο αντικείμενο, είναι ένας αστέρας νετρονίων ή μια μελανή οπή. Μια καινοφανής ανάλαμψη ακτίνων Χ δημιουργείται από μία ξαφνική, δραματική αύξηση της μάζας που προσπίπτει στον δίσκο επαύξησης του συμπαγούς αστέρα, συμπιέζεται και θερμαίνεται ισχυρά, εκπέμποντας ακτίνες Χ. Κατά την διάρκεια μίας ανάλαμψης, η οπτική λαμπρότητα επίσης αυξάνεται σημαντικά (έως και 5 μεγέθη), δίνοντας το χαρακτηριστικό φάσμα ενός λαμπερού δίσκου επαύξησης. Μια έκρηξη ακτίνων Χ είναι δυνατόν να συνοδεύεται από μία έκρηξη ραδιοκυμάτων. Σε ορισμένες περιπτώσεις έχουν ανακαλυφθεί πίδακες σχετικιστικής ύλης, όμοιοι με αυτούς των Ενεργών Γαλαξιακών Πυρήνων, αλλά πολύ μικρότεροι σε μέγεθος και ισχύ. Το γεγονός αυτό καταδεικνύει ότι, πράγματι, μια εκρηκτική εκτίναξη μάζας εμφανίζεται ως αποτέλεσμα ξαφνικής προσαύξησης μάζας.
Καινοφανής ακτίνων-Χ
  • Καινοφανείς Ηλίου (Helium novæ). Καινοφανείς αναλάμψεις από το φάσμα των οποίων απουσιάζουν οι γραμμές του Υδρογόνου ενώ το αέριο που εκτοξεύεται εμφανίζεται εμπλουτισμένο σε Ήλιο και Άνθρακα. Η ύπαρξή τους προβλέφθηκε θεωρητικά από τους Kato, Saio & Hachisu, το 1989 (11 χρόνια, πριν την πανηγυρική τους επιβεβαίωση από τον καινοφανή V445 Puppis), ως μία καινοφανής έκρηξη που προκαλείται από μία αναλαμπή Ηλίου (Helium shell flash), στην επιφάνεια ενός λευκού νάνου. Η θεωρία τους περιλαμβάνει δύο περιπτώσεις προσαύξησης Ηλίου: Ροή Ηλίου από έναν μάλλον «ηλικιωμένο» συνοδό αστέρα ή ροή πλούσιας σε υδρογόνο ύλης από έναν κανονικό συνοδό αστέρα, με μεγάλο ρυθμό επισυσσώρευσης . Στην δεύτερη περίπτωση, ένα μέρος του πλούσιου σε υδρογόνο υλικού, μετατρέπεται σε Ήλιο και συσσωρεύεται στον λευκό νάνο. Όταν η μάζα του στρώματος Ηλίου φτάσει σε μια κρίσιμη τιμή, προκαλείται μία ασταθής, αδύναμη αναλαμπή Ηλίου. Σε έναν καινοφανή Ηλίου η απώλεια μάζας είναι σχετικά ασθενής ενώ το μεγαλύτερο μέρος του Ηλίου καίγεται προς Άνθρακα και Οξυγόνο, παραμένοντας στον λευκό νάνο. Μετά από πολλές περιοδικές αναλαμπές ηλίου, ο λευκός νάνος μεγαλώνει σταδιακά σε μάζα, καταρρέοντας εν τέλει σε έναν αστέρα νετρονίων ή εκρήγνυται ως υπερκαινοφανής τύπου Ia.

Πηγή